論文の概要: Convolutional Network Fabric Pruning With Label Noise
- arxiv url: http://arxiv.org/abs/2202.07268v1
- Date: Tue, 15 Feb 2022 09:24:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-16 15:41:51.752154
- Title: Convolutional Network Fabric Pruning With Label Noise
- Title(参考訳): ラベルノイズを用いた畳み込みネットワークファブリックプルーニング
- Authors: Ilias Benjelloun (SYNALP), Bart Lamiroy (CRESTIC, SYNALP), Efoevi
Koudou (IECL)
- Abstract要約: 本稿では,コンボリューショナル・ネットワーク・ファブリック(CNF)に対して,ノイズの多いトレーニングやテストデータの存在下で反復的プルーニング戦略を提案する。
固有の構造と機能のため、畳み込みネットワークファブリックは刈り込みの理想的な候補である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an iterative pruning strategy for Convolutional Network
Fabrics (CNF) in presence of noisy training and testing data. With the
continuous increase in size of neural network models, various authors have
developed pruning approaches to build more compact network structures requiring
less resources, while preserving performance. As we show in this paper, because
of their intrinsic structure and function, Convolutional Network Fabrics are
ideal candidates for pruning. We present a series of pruning strategies that
can significantly reduce both the final network size and required training time
by pruning either entire convolutional filters or individual weights, so that
the grid remains visually understandable but that overall execution quality
stays within controllable boundaries. Our approach can be iteratively applied
during training so that the network complexity decreases rapidly, saving
computational time. The paper addresses both data-dependent and dataindependent
strategies, and also experimentally establishes the most efficient approaches
when training or testing data contain annotation errors.
- Abstract(参考訳): 本稿では,コンボリューショナル・ネットワーク・ファブリック(CNF)に対して,ノイズの多いトレーニングやテストデータの存在下で反復的プルーニング戦略を提案する。
ニューラルネットワークモデルのサイズが継続的に増加するにつれて、さまざまな著者が、パフォーマンスを維持しながら、リソースを少なくするよりコンパクトなネットワーク構造を構築するためのプラニングアプローチを開発した。
本稿では,本論文で示すように,その固有構造と機能から,畳み込みネットワークファブリックは刈り取りの理想的な候補である。
畳み込みフィルタ全体または個々の重み付けを切断することで、最終的なネットワークサイズと必要なトレーニング時間の両方を著しく削減し、グリッドを視覚的に理解できるが、全体的な実行品質は制御可能な境界内に留まる。
本手法は,ネットワークの複雑さが急速に減少し,計算時間が短縮されるように,トレーニング中に反復的に適用できる。
本論文は,データ依存戦略とデータ依存戦略の両方に対処し,アノテーションエラーを含むデータのトレーニングやテストにおいて,最も効率的なアプローチを実験的に確立する。
関連論文リスト
- RL-Pruner: Structured Pruning Using Reinforcement Learning for CNN Compression and Acceleration [0.0]
RL-Prunerを提案する。このRL-Prunerは、強化学習を用いて最適プルーニング分布を学習する。
RL-Prunerは、モデル固有のプルーニング実装を必要とせずに、入力モデル内のフィルタ間の依存関係を自動的に抽出し、プルーニングを実行する。
論文 参考訳(メタデータ) (2024-11-10T13:35:10Z) - A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
トレンドは、パラメータが増加するより深い、より大きなニューラルネットワークが、より小さなニューラルネットワークよりも高い精度を達成することを示している。
ネットワーク拡張, プルーニング, サブネットワーク崩壊, 削除のためのアルゴリズムを用いて, 構造化プルーニングを一般化する。
結果のCNNは計算コストのかかるスパース行列演算を使わずにGPUハードウェア上で効率的に実行される。
論文 参考訳(メタデータ) (2023-08-28T14:19:13Z) - Learning a Consensus Sub-Network with Polarization Regularization and
One Pass Training [3.2214522506924093]
プルーニングスキームは、静的プルーニングのための反復的なトレーニングと微調整、動的プルーニンググラフの繰り返し計算によって、余分なオーバーヘッドを生み出す。
本稿では,より軽量なサブネットワークを学習するためのパラメータ解析手法を提案する。
CIFAR-10 と CIFAR-100 を用いた結果,分類精度が1% 未満の深層ネットワークにおける接続の50%を除去できることが示唆された。
論文 参考訳(メタデータ) (2023-02-17T09:37:17Z) - Trainability Preserving Neural Structured Pruning [64.65659982877891]
本稿では,正規化型構造化プルーニング法であるTPP(Traiability Preserving pruning)を提案する。
TPPは線形ネットワーク上での地中動力学的等尺性回復法と競合する。
多くのトップパフォーマンスのフィルタプルーニング手法と比較して、優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2022-07-25T21:15:47Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - A Partial Regularization Method for Network Compression [0.0]
本稿では, モデル圧縮を高速に行うために, 完全正則化と言われる全てのパラメータをペナライズする元の形式ではなく, 部分正則化のアプローチを提案する。
実験結果から, ほぼすべての状況において, 走行時間の減少を観測することにより, 計算複雑性を低減できることが示唆された。
驚くべきことに、複数のデータセットのトレーニングフェーズとテストフェーズの両方において、回帰フィッティング結果や分類精度などの重要な指標を改善するのに役立ちます。
論文 参考訳(メタデータ) (2020-09-03T00:38:27Z) - Structured Convolutions for Efficient Neural Network Design [65.36569572213027]
畳み込みニューラルネットワーク構築ブロックのテクスト単純構造における冗長性を利用してモデル効率に取り組む。
この分解が2Dカーネルや3Dカーネルだけでなく、完全に接続されたレイヤにも適用可能であることを示す。
論文 参考訳(メタデータ) (2020-08-06T04:38:38Z) - Rapid Structural Pruning of Neural Networks with Set-based Task-Adaptive
Meta-Pruning [83.59005356327103]
既存のプルーニング技術に共通する制限は、プルーニングの前に少なくとも1回はネットワークの事前トレーニングが必要であることである。
本稿では,ターゲットデータセットの関数としてプルーニングマスクを生成することにより,大規模な参照データセット上で事前訓練されたネットワークをタスク適応的にプルークするSTAMPを提案する。
ベンチマークデータセット上での最近の先進的なプルーニング手法に対するSTAMPの有効性を検証する。
論文 参考訳(メタデータ) (2020-06-22T10:57:43Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。