Explainable COVID-19 Infections Identification and Delineation Using
Calibrated Pseudo Labels
- URL: http://arxiv.org/abs/2202.07422v1
- Date: Fri, 11 Feb 2022 17:32:46 GMT
- Title: Explainable COVID-19 Infections Identification and Delineation Using
Calibrated Pseudo Labels
- Authors: Ming Li, Yingying Fang, Zeyu Tang, Chibudom Onuorah, Jun Xia, Javier
Del Ser, Simon Walsh, Guang Yang
- Abstract summary: We propose a model-agnostic calibrated pseudo-labelling strategy to generate explainable identification and delineation results.
We demonstrate the effectiveness of our model with the combination of limited labelled data and sufficient unlabelled data.
- Score: 13.022429824742055
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The upheaval brought by the arrival of the COVID-19 pandemic has continued to
bring fresh challenges over the past two years. During this COVID-19 pandemic,
there has been a need for rapid identification of infected patients and
specific delineation of infection areas in computed tomography (CT) images.
Although deep supervised learning methods have been established quickly, the
scarcity of both image-level and pixellevel labels as well as the lack of
explainable transparency still hinder the applicability of AI. Can we identify
infected patients and delineate the infections with extreme minimal
supervision? Semi-supervised learning (SSL) has demonstrated promising
performance under limited labelled data and sufficient unlabelled data.
Inspired by SSL, we propose a model-agnostic calibrated pseudo-labelling
strategy and apply it under a consistency regularization framework to generate
explainable identification and delineation results. We demonstrate the
effectiveness of our model with the combination of limited labelled data and
sufficient unlabelled data or weakly-labelled data. Extensive experiments have
shown that our model can efficiently utilize limited labelled data and provide
explainable classification and segmentation results for decision-making in
clinical routine.
Related papers
- Domain Adaptation Using Pseudo Labels for COVID-19 Detection [19.844531606142496]
We present a two-stage framework that leverages pseudo labels for domain adaptation to enhance the detection of COVID-19 from CT scans.
By utilizing annotated data from one domain and non-annotated data from another, the model overcomes the challenge of data scarcity and variability.
Experimental results on COV19-CT-DB database showcase the model's potential to achieve high diagnostic precision.
arXiv Detail & Related papers (2024-03-18T06:07:45Z) - Bag of Tricks for Developing Diabetic Retinopathy Analysis Framework to
Overcome Data Scarcity [6.802798389355481]
We present a study for diabetic retinopathy (DR) analysis tasks, including lesion segmentation, image quality assessment, and DR grading.
For each task, we introduce a robust training scheme by leveraging ensemble learning, data augmentation, and semi-supervised learning.
We propose reliable pseudo labeling that excludes uncertain pseudo-labels based on the model's confidence scores to reduce the negative effect of noisy pseudo-labels.
arXiv Detail & Related papers (2022-10-18T03:25:00Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
Full-reference (FR) image quality assessment (IQA) evaluates the visual quality of a distorted image by measuring its perceptual difference with pristine-quality reference.
Unlabeled data can be easily collected from an image degradation or restoration process, making it encouraging to exploit unlabeled training data to boost FR-IQA performance.
In this paper, we suggest to incorporate semi-supervised and positive-unlabeled (PU) learning for exploiting unlabeled data while mitigating the adverse effect of outliers.
arXiv Detail & Related papers (2022-04-19T09:10:06Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - Severity Quantification and Lesion Localization of COVID-19 on CXR using
Vision Transformer [25.144248675578286]
Under the global pandemic of COVID-19, building an automated framework that quantifies the severity of COVID-19 has become increasingly important.
We propose a novel Vision Transformer tailored for both quantification of the severity and clinically applicable localization of the COVID-19 related lesions.
Our model is trained in a weakly-supervised manner to generate the full probability maps from weak array-based labels.
arXiv Detail & Related papers (2021-03-12T03:17:19Z) - Towards Unbiased COVID-19 Lesion Localisation and Segmentation via
Weakly Supervised Learning [66.36706284671291]
We propose a data-driven framework supervised by only image-level labels to support unbiased lesion localisation.
The framework can explicitly separate potential lesions from original images, with the help of a generative adversarial network and a lesion-specific decoder.
arXiv Detail & Related papers (2021-03-01T06:05:49Z) - Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation [79.58311369297635]
We propose a new weakly-supervised lesions transfer framework, which can explore transferable domain-invariant knowledge across different datasets.
A Wasserstein quantified transferability framework is developed to highlight widerange transferable contextual dependencies.
A novel self-supervised pseudo label generator is designed to equally provide confident pseudo pixel labels for both hard-to-transfer and easy-to-transfer target samples.
arXiv Detail & Related papers (2020-12-08T02:26:03Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.