Robust Multi-Objective Bayesian Optimization Under Input Noise
- URL: http://arxiv.org/abs/2202.07549v2
- Date: Wed, 16 Feb 2022 12:17:21 GMT
- Title: Robust Multi-Objective Bayesian Optimization Under Input Noise
- Authors: Samuel Daulton, Sait Cakmak, Maximilian Balandat, Michael A. Osborne,
Enlu Zhou, Eytan Bakshy
- Abstract summary: In many manufacturing processes, the design parameters are subject to random input noise, resulting in a product that is often less performant than expected.
In this work, we propose the first multi-objective BO method that is robust to input noise.
- Score: 27.603887040015888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimization (BO) is a sample-efficient approach for tuning design
parameters to optimize expensive-to-evaluate, black-box performance metrics. In
many manufacturing processes, the design parameters are subject to random input
noise, resulting in a product that is often less performant than expected.
Although BO methods have been proposed for optimizing a single objective under
input noise, no existing method addresses the practical scenario where there
are multiple objectives that are sensitive to input perturbations. In this
work, we propose the first multi-objective BO method that is robust to input
noise. We formalize our goal as optimizing the multivariate value-at-risk
(MVaR), a risk measure of the uncertain objectives. Since directly optimizing
MVaR is computationally infeasible in many settings, we propose a scalable,
theoretically-grounded approach for optimizing MVaR using random
scalarizations. Empirically, we find that our approach significantly
outperforms alternative methods and efficiently identifies optimal robust
designs that will satisfy specifications across multiple metrics with high
probability.
Related papers
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
We show that vanilla and constrained BO algorithms are inefficient when optimising invariant objectives.
We derive a bound on the maximum information gain of these invariant kernels.
We use our method to design a current drive system for a nuclear fusion reactor, finding a high-performance solution.
arXiv Detail & Related papers (2024-10-22T12:51:46Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Multi-fidelity Constrained Optimization for Stochastic Black Box
Simulators [1.6385815610837167]
We introduce the algorithm Scout-Nd (Stochastic Constrained Optimization for N dimensions) to tackle the issues mentioned earlier.
Scout-Nd efficiently estimates the gradient, reduces the noise of the estimator gradient, and applies multi-fidelity schemes to further reduce computational effort.
We validate our approach on standard benchmarks, demonstrating its effectiveness in optimizing parameters highlighting better performance compared to existing methods.
arXiv Detail & Related papers (2023-11-25T23:36:38Z) - Efficient Robust Bayesian Optimization for Arbitrary Uncertain Inputs [13.578262325229161]
We introduce a novel robust Bayesian Optimization algorithm, AIRBO, which can effectively identify a robust optimum that performs consistently well under arbitrary input uncertainty.
Our method directly models the uncertain inputs of arbitrary distributions by empowering the Gaussian Process with the Maximum Mean Discrepancy (MMD) and further accelerates the posterior inference via Nystrom approximation.
Rigorous theoretical regret bound is established under MMD estimation error and extensive experiments on synthetic functions and real problems demonstrate that our approach can handle various input uncertainties and achieve state-of-the-art performance.
arXiv Detail & Related papers (2023-10-31T03:29:31Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
This paper presents results on multi-objective hyperparameter optimization with uncertainty on the evaluation of Machine Learning algorithms.
We combine the sampling strategy of Tree-structured Parzen Estimators (TPE) with the metamodel obtained after training a Gaussian Process Regression (GPR) with heterogeneous noise.
Experimental results on three analytical test functions and three ML problems show the improvement over multi-objective TPE and GPR.
arXiv Detail & Related papers (2022-09-09T14:58:43Z) - A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty [0.0]
In real-life applications like engineering design, the designer often wants to take multiple objectives as well as input uncertainty into account.
We introduce a novel Bayesian optimization framework to efficiently perform multi-objective optimization considering input uncertainty.
arXiv Detail & Related papers (2022-02-25T17:45:26Z) - Risk-averse Heteroscedastic Bayesian Optimization [45.12421486836736]
We propose a novel risk-averse heteroscedastic Bayesian optimization algorithm (RAHBO)
RAHBO aims to identify a solution with high return and low noise variance, while learning the noise distribution on the fly.
We provide a robust rule to report the final decision point for applications where only a single solution must be identified.
arXiv Detail & Related papers (2021-11-05T17:38:34Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
We consider the problem of searching an input maximizing a black-box objective function given a static dataset of input-output queries.
A popular approach to solving this problem is maintaining a proxy model that approximates the true objective function.
Here, the main challenge is how to avoid adversarially optimized inputs during the search.
arXiv Detail & Related papers (2021-10-27T05:37:12Z) - Robust Topology Optimization Using Multi-Fidelity Variational Autoencoders [1.0124625066746595]
A robust topology optimization (RTO) problem identifies a design with the best average performance.
A neural network method is proposed that offers computational efficiency.
Numerical application of the method is shown on the robust design of L-bracket structure with single point load as well as multiple point loads.
arXiv Detail & Related papers (2021-07-19T20:40:51Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.