論文の概要: Deep Convolutional Autoencoder for Assessment of Drive-Cycle Anomalies in Connected Vehicle Sensor Data
- arxiv url: http://arxiv.org/abs/2202.07592v3
- Date: Mon, 9 Sep 2024 16:18:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 06:18:42.575300
- Title: Deep Convolutional Autoencoder for Assessment of Drive-Cycle Anomalies in Connected Vehicle Sensor Data
- Title(参考訳): 連系車両センサデータにおける駆動サイクル異常評価のための深部畳み込みオートエンコーダ
- Authors: Anthony Geglio, Eisa Hedayati, Mark Tascillo, Dyche Anderson, Jonathan Barker, Timothy C. Havens,
- Abstract要約: 本研究は,完全畳み込み型オートエンコーダを用いた車両における非教師なし故障の自動検出の実用的,新しい手法について検討する。
その結果,ハイブリッド電動車用パワートレインセンサの多変量時系列データから,パワートレイン故障に対応する異常を検出するアルゴリズムが得られた。
追加の教師なし手法が試験され、オートエンコーダは、異常検出や他の新しい深層学習技術よりも優れた故障検出性能を示す。
- 参考スコア(独自算出の注目度): 1.7933377464816112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work investigates a practical and novel method for automated unsupervised fault detection in vehicles using a fully convolutional autoencoder. The results demonstrate the algorithm we developed can detect anomalies which correspond to powertrain faults by learning patterns in the multivariate time-series data of hybrid-electric vehicle powertrain sensors. Data was collected by engineers at Ford Motor Company from numerous sensors over several drive cycle variations. This study provides evidence of the anomaly detecting capability of our trained autoencoder and investigates the suitability of our autoencoder relative to other unsupervised methods for automatic fault detection in this data set. Preliminary results of testing the autoencoder on the powertrain sensor data indicate the data reconstruction approach availed by the autoencoder is a robust technique for identifying the abnormal sequences in the multivariate series. These results support that irregularities in hybrid-electric vehicles' powertrains are conveyed via sensor signals in the embedded electronic communication system, and therefore can be identified mechanistically with a trained algorithm. Additional unsupervised methods are tested and show the autoencoder performs better at fault detection than outlier detectors and other novel deep learning techniques.
- Abstract(参考訳): 本研究は,完全畳み込み型オートエンコーダを用いた車両における非教師なし故障の自動検出の実用的,新しい手法について検討する。
その結果,ハイブリッド電動車用パワートレインセンサの多変量時系列データから,パワートレイン故障に対応する異常を検出するアルゴリズムが得られた。
データはFord Motor Companyのエンジニアによって、複数の駆動サイクルのバリエーションに関する多数のセンサーから収集された。
本研究は, トレーニング済みオートエンコーダの異常検出能力の証明と, 自動エンコーダの異常検出に対する他の教師なし手法に対する適合性について検討する。
パワートレインセンサデータ上でオートエンコーダを試験した結果、オートエンコーダが適用したデータ再構成アプローチは、多変量系列の異常シーケンスを特定するための堅牢な手法であることがわかった。
これらの結果は、ハイブリッド電気自動車のパワートレインの不規則性は、組込み電子通信システムにおけるセンサ信号を介して伝達され、したがって、訓練されたアルゴリズムで機械的に識別可能であることを裏付ける。
追加の教師なし手法が試験され、オートエンコーダは、異常検出や他の新しい深層学習技術よりも優れた故障検出性能を示す。
関連論文リスト
- Automated Automotive Radar Calibration With Intelligent Vehicles [73.15674960230625]
本稿では,自動車用レーダセンサの自動校正手法を提案する。
本手法では, 車両の外部改造を必要とせず, 自動走行車から得られる位置情報を利用する。
実地試験場からのデータを評価した結果,インフラセンサを自動で正確に校正できることが判明した。
論文 参考訳(メタデータ) (2023-06-23T07:01:10Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - A Temporal Anomaly Detection System for Vehicles utilizing Functional
Working Groups and Sensor Channels [0.0]
Vehicle Performance, Reliability, Operationsデータセットを導入し, 異常検出のためのマルチフェーズアプローチを作成する。
我々の異常検出システムは96%の精度で検出でき、真の異常の91%を正確に予測できる。
論文 参考訳(メタデータ) (2022-09-14T14:33:07Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
事前学習されたLeNet-5畳み込みニューラルネットワークに基づく新しい伝達学習フレームワークを提案する。
ソースニューラルネットワークから知識を転送して、異種ターゲットデータセットを予測することで、異なる伝送ラインの長さとインピーダンスの障害を診断することができる。
論文 参考訳(メタデータ) (2022-01-20T06:36:35Z) - Anomaly Detection in Multi-Agent Trajectories for Automated Driving [2.5211566369910967]
人間と同様、自動走行車は異常検出を行う。
私たちの革新は、動的エージェントの複数の軌道を共同で学習する能力です。
論文 参考訳(メタデータ) (2021-10-15T08:07:31Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
オートエンコーダは、マルチセンサー環境で異常を検出するために使用される教師なしモデルである。
異常は、実際の環境の変化(実際のドリフト)や、故障した感覚デバイス(仮想ドリフト)から生じる。
論文 参考訳(メタデータ) (2021-07-28T10:19:58Z) - Source-Agnostic Gravitational-Wave Detection with Recurrent Autoencoders [0.0]
本稿では, レーザ干渉計における重力波信号検出問題に対する, ディープリカレントオートエンコーダに基づく異常検出手法の適用について述べる。
ノイズデータに基づいて訓練されたこのアルゴリズムは、特定の種類のソースを標的にすることなく、教師なしの戦略を用いて信号を検出することができる。
論文 参考訳(メタデータ) (2021-07-27T09:56:49Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Anomaly Detection with SDAE [2.9447568514391067]
A Simple, Deep, and Supervised Deep Autoencoder were trained and comparison for anomaly detection over the ASHRAE building energy data。
ディープ・オートエンコーダが最も優れているが、スーパービジョンド・ディープ・オートエンコーダは検出された全異常において他のモデルよりも優れている。
論文 参考訳(メタデータ) (2020-04-09T07:22:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。