Remote Entanglement of Superconducting Qubits via Solid-State Spin
Quantum Memories
- URL: http://arxiv.org/abs/2202.07888v2
- Date: Mon, 7 Mar 2022 10:10:53 GMT
- Title: Remote Entanglement of Superconducting Qubits via Solid-State Spin
Quantum Memories
- Authors: Hodaka Kurokawa, Moyuki Yamamoto, Yuhei Sekiguchi, and Hideo Kosaka
- Abstract summary: Quantum communication between remote superconducting systems is being studied intensively to increase the number of integrated superconducting qubits.
We propose an entanglement distribution scheme using a solid-state spin quantum memory that works as an interface for both microwave and optical photons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum communication between remote superconducting systems is being studied
intensively to increase the number of integrated superconducting qubits and to
realize a distributed quantum computer. Since optical photons must be used for
communication outside a dilution refrigerator, the direct conversion of
microwave photons to optical photons has been widely investigated. However, the
direct conversion approach suffers from added photon noise, heating due to a
strong optical pump, and the requirement for large cooperativity. Instead, for
quantum communication between superconducting qubits, we propose an
entanglement distribution scheme using a solid-state spin quantum memory that
works as an interface for both microwave and optical photons. The quantum
memory enables quantum communication without significant heating inside the
refrigerator, in contrast to schemes using high-power optical pumps. Moreover,
introducing the quantum memory naturally makes it possible to herald
entanglement and parallelization using multiple memories.
Related papers
- Quantum entanglement between optical and microwave photonic qubits [1.817633657275965]
Entanglement is an extraordinary feature of quantum mechanics.
Here we demonstrate a chip-scale source of entangled optical and microwave photonic qubits.
arXiv Detail & Related papers (2023-12-21T04:02:48Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Frequency-tunable microwave quantum light source based on
superconducting quantum circuits [6.7579902550023245]
A non-classical light source is essential for implementing a wide range of quantum information processing protocols.
In the microwave regime, propagating photonic qubits serve as building blocks of large-scale quantum computers.
Here we demonstrate a microwave quantum light source based on superconducting quantum circuits that can generate propagating single photons.
arXiv Detail & Related papers (2023-04-12T13:21:40Z) - Demonstration of deterministic SWAP gate between superconducting and
frequency-encoded microwave-photon qubits [0.0]
We show a SWAP gate between the superconducting-atom and microwave-photon qubits.
We confirm the bidirectional quantum state transfer between the atom and photon qubits.
The present atom-photon gate, equipped with an in situ tunability of the gate type, would enable various applications in distributed quantum computation.
arXiv Detail & Related papers (2023-02-09T10:27:16Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
Single photons constitute a main platform in quantum science and technology.
Main challenge in quantum photonics is how to generate advanced entangled resource states and efficient light-matter interfaces.
We utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide for realizing quantum nonlinear interaction between single-photon wavepackets.
arXiv Detail & Related papers (2021-12-13T17:33:30Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum transduction of optical photons from a superconducting qubit [0.0]
We demonstrate the conversion of a microwave-frequency excitation of a superconducting transmon qubit into an optical photon.
With proposed improvements in the device and external measurement set-up, such quantum transducers may lead to practical devices capable of realizing new hybrid quantum networks.
arXiv Detail & Related papers (2020-04-09T22:34:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.