Frequency-tunable microwave quantum light source based on
superconducting quantum circuits
- URL: http://arxiv.org/abs/2304.05847v1
- Date: Wed, 12 Apr 2023 13:21:40 GMT
- Title: Frequency-tunable microwave quantum light source based on
superconducting quantum circuits
- Authors: Yan Li, Zhiling Wang, Zenghui Bao, Yukai Wu, Jiahui Wang, Jize Yang,
Haonan Xiong, Yipu Song, Hongyi Zhang, Luming Duan
- Abstract summary: A non-classical light source is essential for implementing a wide range of quantum information processing protocols.
In the microwave regime, propagating photonic qubits serve as building blocks of large-scale quantum computers.
Here we demonstrate a microwave quantum light source based on superconducting quantum circuits that can generate propagating single photons.
- Score: 6.7579902550023245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A nonclassical light source is essential for implementing a wide range of
quantum information processing protocols, including quantum computing,
networking, communication, and metrology. In the microwave regime, propagating
photonic qubits that transfer quantum information between multiple
superconducting quantum chips serve as building blocks of large-scale quantum
computers. In this context, spectral control of propagating single photons is
crucial for interfacing different quantum nodes with varied frequencies and
bandwidth. Here we demonstrate a microwave quantum light source based on
superconducting quantum circuits that can generate propagating single photons,
time-bin encoded photonic qubits and qudits. In particular, the frequency of
the emitted photons can be tuned in situ as large as 200 MHz. Even though the
internal quantum efficiency of the light source is sensitive to the working
frequency, we show that the fidelity of the propagating photonic qubit can be
well preserved with the time-bin encoding scheme. Our work thus demonstrates a
versatile approach to realizing a practical quantum light source for future
distributed quantum computing.
Related papers
- A quantum-network register assembled with optical tweezers in an optical cavity [0.0]
Quantum computation and quantum communication are expected to provide users with capabilities inaccessible by classical physics.
One solution is to develop a quantum network consisting of small-scale quantum registers containing computation qubits.
We report on a register that uses both optical tweezers and optical lattices to deterministically assemble a two-dimensional array of atoms in an optical cavity.
arXiv Detail & Related papers (2024-07-12T09:20:57Z) - Robust Parallel Laser Driving of Quantum Dots for Multiplexing of
Quantum Light Sources [0.1806830971023738]
We show the simultaneous triggering of >10 quantum dots using adiabatic rapid passage.
We show that high-fidelity quantum state is possible in a system of quantum dots with a 15meV range of optical transition energies.
arXiv Detail & Related papers (2023-11-28T17:32:45Z) - Multiplexed Processing of Quantum Information Across an Ultra-wide Optical Bandwidth [0.0]
Current quantum protocols are limited by the narrow electronic bandwidth of standard measurement devices.
We present a concept of frequency multiplexed quantum channels and a set of methods to process quantum information efficiently across the available optical bandwidth.
arXiv Detail & Related papers (2023-10-26T23:50:20Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - On-chip distribution of quantum information using traveling phonons [0.0]
We experimentally demonstrate the feasibility of distributing quantum information using phonons.
We show how the phononic, together with a photonic qubit, can be used to violate a Bell-type inequality.
arXiv Detail & Related papers (2022-04-11T13:08:23Z) - Remote Entanglement of Superconducting Qubits via Solid-State Spin
Quantum Memories [0.0]
Quantum communication between remote superconducting systems is being studied intensively to increase the number of integrated superconducting qubits.
We propose an entanglement distribution scheme using a solid-state spin quantum memory that works as an interface for both microwave and optical photons.
arXiv Detail & Related papers (2022-02-16T06:43:22Z) - A bright and fast source of coherent single photons [46.25143811066789]
A single photon source is a key enabling technology in device-independent quantum communication.
We report a single photon source with an especially high system efficiency.
arXiv Detail & Related papers (2020-07-24T17:08:46Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide.
We generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies.
arXiv Detail & Related papers (2020-03-16T16:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.