Universal Behavior of Multipartite Entanglement in Crossing the Quantum
Critical Point
- URL: http://arxiv.org/abs/2202.07892v1
- Date: Wed, 16 Feb 2022 06:58:10 GMT
- Title: Universal Behavior of Multipartite Entanglement in Crossing the Quantum
Critical Point
- Authors: Hao-Yu Sun, Zi-Yong Ge, and Heng Fan
- Abstract summary: We investigate multipartite entanglement of the quantum Ising model with transverse fields for a slow quantum quench crossing a critical point.
Our results reveal that the multipartite entanglement provides a new viewpoint to understand the dynamics of quantum phase transition.
- Score: 11.98074850168011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate multipartite entanglement of the quantum Ising model with
transverse fields for a slow quantum quench crossing a critical point. The
multipartite entanglement is quantified by quantum Fisher information with the
generator defined as the operator of the ferromagnetic order parameter due to
the system symmetry. The quench dynamics begin with the ground state of the
large transverse field in the paramagnetic phase, and then the transverse field
is driven slowly to cross a quantum critical point and ends with a zero
transverse field. Based on methods of matrix product state, we calculate the
quantum Fisher information density of the final state. Numerical results of
both linear and nonlinear quench show that the quantum Fisher information
density of the final state scales as a power law of the quench rate, which has
an opposite exponent of the Kibble-Zurek scaling. Our results reveal that the
multipartite entanglement provides a new viewpoint to understand the dynamics
of quantum phase transition. Based on the observation of entanglement in the
quenched state, we also expect that our result would inspire approaches for
preparing multipartite entangled states in quantum information processing.
Related papers
- Quantum coarsening and collective dynamics on a programmable quantum simulator [27.84599956781646]
We experimentally study collective dynamics across a (2+1)D Ising quantum phase transition.
By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries.
We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode.
arXiv Detail & Related papers (2024-07-03T16:29:12Z) - Universal scaling of quantum state transport in one-dimensional topological chain under nonadiabatic dynamics [4.9347081318119015]
We study the scaling of quantum state transport in a one-dimensional topological system subject to a linear drive.
We illustrate the power-law dependencies of the quantum state's transport distance, width, and peak magnitude on the driving velocity.
arXiv Detail & Related papers (2024-06-26T02:08:28Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Meson content of entanglement spectra after integrable and nonintegrable
quantum quenches [0.0]
We calculate the time evolution of the lower part of the entanglement spectrum and return rate functions after global quantum quenches in the Ising model.
Our analyses provide a deeper understanding on the role of quantum information quantities for the dynamics of emergent phenomena reminiscent to systems in high-energy physics.
arXiv Detail & Related papers (2022-10-27T18:00:01Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Scattering as a quantum metrology problem: a quantum walk approach [0.0]
We address the scattering of a quantum particle by a one-dimensional barrier potential over a set of discrete positions.
We formalize the problem as a continuous-time quantum walk on a lattice with an impurity, and use the quantum Fisher information as a mean to quantify the maximal possible accuracy in the estimation of the height of the barrier.
arXiv Detail & Related papers (2020-10-23T14:42:25Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.