論文の概要: Automatic Depression Detection: An Emotional Audio-Textual Corpus and a
GRU/BiLSTM-based Model
- arxiv url: http://arxiv.org/abs/2202.08210v1
- Date: Tue, 15 Feb 2022 03:29:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-17 15:56:40.222056
- Title: Automatic Depression Detection: An Emotional Audio-Textual Corpus and a
GRU/BiLSTM-based Model
- Title(参考訳): 自動抑うつ検出:感情音声テキストコーパスとGRU/BiLSTMモデル
- Authors: Ying Shen, Huiyu Yang, Lin Lin
- Abstract要約: うつ病は世界的なメンタルヘルスの問題であり、最悪のケースは自殺につながる可能性がある。
参加者のインタビューから音声の特徴と言語内容を利用した抑うつ検出手法を提案する。
うつ病や非うつ病のボランティアから音声と回答の書き起こしを抽出した情緒的音声テキスト圧縮コーパス(EATD-Corpus)を構築した。
- 参考スコア(独自算出の注目度): 17.83052349861756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depression is a global mental health problem, the worst case of which can
lead to suicide. An automatic depression detection system provides great help
in facilitating depression self-assessment and improving diagnostic accuracy.
In this work, we propose a novel depression detection approach utilizing speech
characteristics and linguistic contents from participants' interviews. In
addition, we establish an Emotional Audio-Textual Depression Corpus
(EATD-Corpus) which contains audios and extracted transcripts of responses from
depressed and non-depressed volunteers. To the best of our knowledge,
EATD-Corpus is the first and only public depression dataset that contains audio
and text data in Chinese. Evaluated on two depression datasets, the proposed
method achieves the state-of-the-art performances. The outperforming results
demonstrate the effectiveness and generalization ability of the proposed
method. The source code and EATD-Corpus are available at
https://github.com/speechandlanguageprocessing/ICASSP2022-Depression.
- Abstract(参考訳): うつ病は世界的なメンタルヘルスの問題であり、最悪の場合自殺につながる可能性がある。
自動うつ病検出システムは、うつ病自己診断を容易にし、診断精度を向上させるのに大いに役立つ。
本研究では,参加者のインタビューから音声の特徴と言語内容を利用した新しい抑うつ検出手法を提案する。
さらに,抑うつ者や非抑うつ者から音声や回答の書き起こしを抽出するEATD-Corpus(Emotional Audio-Textual Depression Corpus)を構築した。
私たちの知る限りでは、eatd-corpusは中国語で音声とテキストデータを含む最初の、唯一の公開うつ病データセットです。
提案手法は,2つのうつ病データセットで評価され,最新性能が得られた。
その結果,提案手法の有効性と一般化能力が示された。
ソースコードとEATD-Corpusはhttps://github.com/speechandlangprocessing/ICASSP2022-Depressionで入手できる。
関連論文リスト
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
メンタルヘルス障害は世界で最も深刻な病気の1つである。
プライバシーに関する懸念は、パーソナライズされた治療データのアクセシビリティを制限する。
MentalArenaは、言語モデルをトレーニングするためのセルフプレイフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T13:06:40Z) - Language-Agnostic Analysis of Speech Depression Detection [2.5764071253486636]
本研究は、英語とマラヤラムの2言語間での自動抑うつ検出を解析する。
CNNモデルは、両言語に焦点をあてて、抑うつに関連する音響的特徴を特定するために訓練される。
その結果,言語に依存しない抑うつ検出システムの開発に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2024-09-23T07:35:56Z) - MASON-NLP at eRisk 2023: Deep Learning-Based Detection of Depression
Symptoms from Social Media Texts [0.0]
うつ病は精神疾患であり、人々の生活に大きな影響を及ぼす。
最近の研究は、うつ病の兆候が個人のコミュニケーションの仕方で検出できることを示唆している。
ソーシャルメディア投稿は、うつ病の症状を調べるためのリッチで便利なテキストソースです。
論文 参考訳(メタデータ) (2023-10-17T02:34:34Z) - The Relationship Between Speech Features Changes When You Get Depressed:
Feature Correlations for Improving Speed and Performance of Depression
Detection [69.88072583383085]
この研究は、抑うつが音声から抽出した特徴間の相関を変化させることを示す。
このような洞察を用いることで、SVMとLSTMに基づく抑うつ検出器のトレーニング速度と性能を向上させることができる。
論文 参考訳(メタデータ) (2023-07-06T09:54:35Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
ソーシャルメディア投稿からの抑うつ検出のための奥深いアーキテクチャを提案する。
我々は、後期融合方式を用いて、ポストとワードの敬称と道徳的特徴をアーキテクチャに組み込んだ。
提案された機能を含めると、両方の設定で最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-03-24T21:26:27Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
精神健康に対する短期的コビデンスの影響は、不安や抑うつ症状の顕著な増加であった。
本研究の目的は、健康な人とうつ病患者を識別するために、オンライン手書き・図面解析という新しいツールを使用することである。
論文 参考訳(メタデータ) (2023-02-05T22:33:49Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
うつ病は、深刻な結果を避けるために、早期に検出され治療されなければならない一般的な精神疾患である。
我々は、ソーシャルメディアの投稿から、うつ病のレベルが落ち込んでいないこと、中程度に落ち込んでいないこと、および深刻な落ち込んでいないことを検知する、金の標準データセットを開発した。
論文 参考訳(メタデータ) (2022-02-07T10:24:33Z) - A Psychologically Informed Part-of-Speech Analysis of Depression in
Social Media [1.7188280334580193]
私たちは、Early Risk Prediction on the Internet Workshop (eRisk) 2018のうつ病データセットを使用します。
その結果, うつ病者と非うつ病者の間に統計的に有意な差が認められた。
我々の研究は、抑うつした個人がソーシャルメディアプラットフォーム上で自己表現している方法に関する洞察を提供する。
論文 参考訳(メタデータ) (2021-07-31T16:23:22Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Affective Conditioning on Hierarchical Networks applied to Depression
Detection from Transcribed Clinical Interviews [0.0]
抑うつは、被験者の気分だけでなく、言語の使用にも影響を及ぼす精神障害である。
我々は階層的注意ネットワークを用いて抑うつ者のインタビューを分類する。
我々は,情緒的レキシカから抽出した言語的特徴の条件付け機構により,モデルの注意層を増強する。
論文 参考訳(メタデータ) (2020-06-04T20:55:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。