Time-Correlated Sparsification for Efficient Over-the-Air Model
Aggregation in Wireless Federated Learning
- URL: http://arxiv.org/abs/2202.08420v1
- Date: Thu, 17 Feb 2022 02:48:07 GMT
- Title: Time-Correlated Sparsification for Efficient Over-the-Air Model
Aggregation in Wireless Federated Learning
- Authors: Yuxuan Sun, Sheng Zhou, Zhisheng Niu, Deniz G\"und\"uz
- Abstract summary: Federated edge learning (FEEL) is a promising distributed machine learning (ML) framework to drive edge intelligence applications.
We propose time-correlated sparsification with hybrid aggregation (TCS-H) for communication-efficient FEEL.
- Score: 23.05003652536773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated edge learning (FEEL) is a promising distributed machine learning
(ML) framework to drive edge intelligence applications. However, due to the
dynamic wireless environments and the resource limitations of edge devices,
communication becomes a major bottleneck. In this work, we propose
time-correlated sparsification with hybrid aggregation (TCS-H) for
communication-efficient FEEL, which exploits jointly the power of model
compression and over-the-air computation. By exploiting the temporal
correlations among model parameters, we construct a global sparsification mask,
which is identical across devices, and thus enables efficient model aggregation
over-the-air. Each device further constructs a local sparse vector to explore
its own important parameters, which are aggregated via digital communication
with orthogonal multiple access. We further design device scheduling and power
allocation algorithms for TCS-H. Experiment results show that, under limited
communication resources, TCS-H can achieve significantly higher accuracy
compared to the conventional top-K sparsification with orthogonal model
aggregation, with both i.i.d. and non-i.i.d. data distributions.
Related papers
- DYNAMITE: Dynamic Interplay of Mini-Batch Size and Aggregation Frequency
for Federated Learning with Static and Streaming Dataset [23.11152686493894]
Federated Learning (FL) is a distributed learning paradigm that can coordinate heterogeneous edge devices to perform model training without sharing private data.
This paper introduces novel analytical models and optimization algorithms that leverage the interplay between batch size and aggregation frequency to navigate the trade-offs among convergence, cost, and completion time for dynamic FL training.
arXiv Detail & Related papers (2023-10-20T08:36:12Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Semi-Asynchronous Federated Edge Learning Mechanism via Over-the-air
Computation [4.598679151181452]
We propose a semi-asynchronous aggregation FEEL mechanism with AirComp scheme (PAOTA) to improve the training efficiency of the FEEL system.
Our proposed algorithm achieves convergence performance close to that of the ideal Local SGD.
arXiv Detail & Related papers (2023-05-06T15:06:03Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
Machine learning (ML) is a key technique for big-data-driven modelling and analysis of massive Internet of Things (IoT) based intelligent and ubiquitous computing.
For fast-increasing applications and data amounts, distributed learning is a promising emerging paradigm since it is often impractical or inefficient to share/aggregate data.
This paper studies the problem of training an ML model over decentralized systems, where data are distributed over many user devices.
arXiv Detail & Related papers (2022-02-07T15:04:15Z) - Communication-Efficient Device Scheduling for Federated Learning Using
Stochastic Optimization [26.559267845906746]
Time learning (FL) is a useful tool in distributed machine learning that utilizes users' local datasets in a privacy-preserving manner.
In this paper, we provide a novel convergence analysis non-efficient convergence bound algorithm.
We also develop a new selection and power allocation algorithm that minimizes a function of the convergence bound and the average communication under a power constraint.
arXiv Detail & Related papers (2022-01-19T23:25:24Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices.
In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL.
Our proposed StoFedDelAv incorporates a localglobal model combiner into the FL computation step.
arXiv Detail & Related papers (2021-12-27T22:30:15Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
We propose a technique to reduce the total energy bill at the edge device by utilizing model compression and time-varying model split between the edge and remote nodes.
Our proposed solution results in minimal energy consumption and $CO$ emission compared to the considered baselines.
arXiv Detail & Related papers (2021-06-02T07:36:27Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
This paper proposes a unit-modulus over-the-air computation (UM-AirComp) framework to facilitate efficient edge federated learning.
It uploads simultaneously local model parameters and updates global model parameters via analog beamforming.
We demonstrate the implementation of UM-AirComp in a vehicle-to-everything autonomous driving simulation platform.
arXiv Detail & Related papers (2021-01-28T15:10:22Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - Scheduling Policy and Power Allocation for Federated Learning in NOMA
Based MEC [21.267954799102874]
Federated learning (FL) is a highly pursued machine learning technique that can train a model centrally while keeping data distributed.
We propose a new scheduling policy and power allocation scheme using non-orthogonal multiple access (NOMA) settings to maximize the weighted sum data rate.
Simulation results show that the proposed scheduling and power allocation scheme can help achieve a higher FL testing accuracy in NOMA based wireless networks.
arXiv Detail & Related papers (2020-06-21T23:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.