論文の概要: CADRE: A Cascade Deep Reinforcement Learning Framework for Vision-based
Autonomous Urban Driving
- arxiv url: http://arxiv.org/abs/2202.08557v2
- Date: Wed, 19 Apr 2023 15:24:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 18:27:59.928859
- Title: CADRE: A Cascade Deep Reinforcement Learning Framework for Vision-based
Autonomous Urban Driving
- Title(参考訳): CADRE:視覚に基づく自律型都市走行のためのカスケード深部強化学習フレームワーク
- Authors: Yinuo Zhao, Kun Wu, Zhiyuan Xu, Zhengping Che, Qi Lu, Jian Tang, Chi
Harold Liu
- Abstract要約: 複雑な都市環境と運転行動のダイナミクスのため、高密度交通における視覚に基づく自律走行は極めて困難である。
本稿では,モデルフリーな視覚に基づく自律型都市走行を実現するために,新しいCAscade Deep Reinforcement LearningフレームワークCADREを提案する。
- 参考スコア(独自算出の注目度): 43.269130988225605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-based autonomous urban driving in dense traffic is quite challenging
due to the complicated urban environment and the dynamics of the driving
behaviors. Widely-applied methods either heavily rely on hand-crafted rules or
learn from limited human experience, which makes them hard to generalize to
rare but critical scenarios. In this paper, we present a novel CAscade Deep
REinforcement learning framework, CADRE, to achieve model-free vision-based
autonomous urban driving. In CADRE, to derive representative latent features
from raw observations, we first offline train a Co-attention Perception Module
(CoPM) that leverages the co-attention mechanism to learn the
inter-relationships between the visual and control information from a
pre-collected driving dataset. Cascaded by the frozen CoPM, we then present an
efficient distributed proximal policy optimization framework to online learn
the driving policy under the guidance of particularly designed reward
functions. We perform a comprehensive empirical study with the CARLA NoCrash
benchmark as well as specific obstacle avoidance scenarios in autonomous urban
driving tasks. The experimental results well justify the effectiveness of CADRE
and its superiority over the state-of-the-art by a wide margin.
- Abstract(参考訳): 複雑な都市環境と運転行動のダイナミクスのため、高密度交通における視覚に基づく自律走行は極めて困難である。
広く応用された手法は、手作りのルールに大きく依存するか、限られた人間の経験から学習する。
本稿では,モデルフリービジョンに基づく自律運転を実現するために,新しいカスケード深層強化学習フレームワークcadreを提案する。
cadreでは、生の観察から代表的潜在性特徴を導出するため、まずコアテンション機構を利用したコアテンション知覚モジュール(copm)をオフラインで訓練し、事前収集した駆動データセットから視覚情報と制御情報との相互関係を学習する。
凍結したCoPMを事例として、特に設計された報酬関数の指導の下で、運転ポリシーをオンライン学習するための効率的な分散近位ポリシー最適化フレームワークを提案する。
我々は、CARLA NoCrashベンチマークと、自律都市運転タスクにおける特定の障害物回避シナリオを用いて、総合的な実証的研究を行う。
実験結果はCADREの有効性と最先端技術に対する優位性を広いマージンで良好に証明した。
関連論文リスト
- Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
モデルに基づく強化学習手法であるIso-Dream++を提案する。
我々は、切り離された潜在的想像力に基づいて政策最適化を行う。
これにより、野生の混合力学源を孤立させることで、長い水平振動子制御タスクの恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-03-27T02:55:56Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - GINK: Graph-based Interaction-aware Kinodynamic Planning via
Reinforcement Learning for Autonomous Driving [10.782043595405831]
都市部などの構造環境下での自律運転に深部強化学習(D)を適用するには,多くの課題がある。
本稿では,グラフに基づく意図表現と動的計画のための強化学習を効果的に組み合わせた新しいフレームワークを提案する。
この実験は,既存のベースラインと比較して,我々のアプローチの最先端性能を示すものである。
論文 参考訳(メタデータ) (2022-06-03T10:37:25Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
本稿では,視覚に基づくエンドツーエンド自動運転のための安全保証学習フレームワークを提案する。
我々は、勾配降下によりエンドツーエンドに訓練された微分制御バリア関数(dCBF)を備えた学習システムを設計する。
論文 参考訳(メタデータ) (2022-03-04T16:14:33Z) - Affordance-based Reinforcement Learning for Urban Driving [3.507764811554557]
経路点と低次元視覚表現を用いた最適制御ポリシーを学習するための深層強化学習フレームワークを提案する。
スクラッチから訓練されたエージェントは、車線追従のタスクを学習し、区間間を走り回り、密集した交通状況でも他のアクターや信号機の前で立ち止まることを実証する。
論文 参考訳(メタデータ) (2021-01-15T05:21:25Z) - Reinforcement Learning for Autonomous Driving with Latent State
Inference and Spatial-Temporal Relationships [46.965260791099986]
強化学習フレームワークにおける潜伏状態の明示的に推測と空間的時間的関係の符号化は,この課題に対処する上で有効であることを示す。
我々は、強化学習者と教師付き学習者を組み合わせた枠組みにより、他の運転者の潜伏状態に関する事前知識を符号化する。
提案手法は,最先端のベースラインアプローチと比較して,T区間のナビゲーションにおける性能を著しく向上させる。
論文 参考訳(メタデータ) (2020-11-09T08:55:12Z) - Behavioral decision-making for urban autonomous driving in the presence
of pedestrians using Deep Recurrent Q-Network [0.0]
都市環境における自動運転の意思決定は,道路構造の複雑化と多様な道路利用者の行動の不確実性により困難である。
本研究では,歩行者の存在下での都市環境における高レベル運転行動に対する深層強化学習に基づく意思決定手法を提案する。
提案手法は都市密集シナリオに対して評価し,ルールベース手法と比較し,DRQNに基づく運転行動決定器がルールベース手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-26T08:08:06Z) - Interpretable End-to-end Urban Autonomous Driving with Latent Deep
Reinforcement Learning [32.97789225998642]
本稿では,エンドツーエンド自動運転のための解釈可能な深部強化学習手法を提案する。
逐次潜在環境モデルを導入し、強化学習プロセスと共同で学習する。
本手法は,自動車が運転環境にどう影響するかを,よりよく説明することができる。
論文 参考訳(メタデータ) (2020-01-23T18:36:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。