論文の概要: A study of deep perceptual metrics for image quality assessment
- arxiv url: http://arxiv.org/abs/2202.08692v1
- Date: Thu, 17 Feb 2022 14:52:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-18 15:46:50.536469
- Title: A study of deep perceptual metrics for image quality assessment
- Title(参考訳): 画像品質評価のための深い知覚指標に関する研究
- Authors: R\'emi Kazmierczak, Gianni Franchi, Nacim Belkhir, Antoine Manzanera,
David Filliat
- Abstract要約: 我々は、画像品質評価(IQA)タスクに取り組むために、ディープニューラルネットワークに基づく知覚メトリクスについて検討する。
異なる解像度で知覚情報を集約できる多分解能知覚距離(MR-Perceptual)を提案する。
- 参考スコア(独自算出の注目度): 3.254879465902239
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several metrics exist to quantify the similarity between images, but they are
inefficient when it comes to measure the similarity of highly distorted images.
In this work, we propose to empirically investigate perceptual metrics based on
deep neural networks for tackling the Image Quality Assessment (IQA) task. We
study deep perceptual metrics according to different hyperparameters like the
network's architecture or training procedure. Finally, we propose our
multi-resolution perceptual metric (MR-Perceptual), that allows us to aggregate
perceptual information at different resolutions and outperforms standard
perceptual metrics on IQA tasks with varying image deformations. Our code is
available at https://github.com/ENSTA-U2IS/MR_perceptual
- Abstract(参考訳): 画像間の類似度を定量化する指標はいくつか存在するが、高度に歪んだ画像の類似度を測定することは非効率である。
本研究では,画像品質評価(iqa)タスクに取り組むために,深層ニューラルネットワークに基づく知覚指標を実証的に検討する。
ネットワークのアーキテクチャやトレーニング手順など、さまざまなハイパーパラメータに従って、深い知覚指標を調査します。
最後に,様々な解像度で知覚情報を集約し,画像変形の異なる iqa タスクにおける標準知覚指標を上回るマルチレゾリューション知覚指標(mr-perceptual)を提案する。
私たちのコードはhttps://github.com/ENSTA-U2IS/MR_perceptualで利用可能です。
関連論文リスト
- CSIM: A Copula-based similarity index sensitive to local changes for Image quality assessment [2.3874115898130865]
画像類似度メトリクスは、画像処理、コンピュータビジョン、機械学習で使用されるため、コンピュータビジョンアプリケーションにおいて重要な役割を果たす。
PSNR、MSE、SSIM、ISSM、FSIMといった既存のメトリクスは、画像の小さな変更に対する速度、複雑さ、感度のいずれにおいても制限に直面していることが多い。
本稿では,画像の微妙な変化に敏感でありながらリアルタイムに組み合わせた新しい画像類似度指標CSIMについて検討する。
論文 参考訳(メタデータ) (2024-10-02T10:46:05Z) - Parameter-Inverted Image Pyramid Networks [49.35689698870247]
Inverted Image Pyramid Networks (PIIP) と呼ばれる新しいネットワークアーキテクチャを提案する。
私たちの中核となる考え方は、パラメータサイズの異なるモデルを使用して、画像ピラミッドの解像度の異なるレベルを処理することです。
PIIPは、オブジェクト検出、セグメンテーション、画像分類などのタスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-06-06T17:59:10Z) - Reference-Free Image Quality Metric for Degradation and Reconstruction Artifacts [2.5282283486446753]
品質要因予測器(QF)と呼ばれる基準のない品質評価ネットワークを開発する。
我々のQF予測器は7層からなる軽量で完全な畳み込みネットワークである。
JPEG圧縮画像パッチを入力としてランダムQFを受信し、対応するQFを正確に予測するように訓練する。
論文 参考訳(メタデータ) (2024-05-01T22:28:18Z) - Large-to-small Image Resolution Asymmetry in Deep Metric Learning [13.81293627340993]
我々は、高速な表現抽出を可能にするために、クエリの軽量処理による非対称なセットアップを小さな画像解像度で探索する。
目標は、大規模な解像度画像を操作するために訓練されたデータベースサンプルのためのネットワークと、きめ細かい画像の詳細の恩恵を得ることである。
我々は、分解能非対称性は、アーキテクチャ非対称性よりも性能/効率のトレードオフを最適化するより良い方法である、と結論付けている。
論文 参考訳(メタデータ) (2022-10-11T14:05:30Z) - Introspective Deep Metric Learning for Image Retrieval [80.29866561553483]
良好な類似性モデルは、より堅牢なトレーニングのために曖昧なイメージをよりよく扱うように注意しながら、意味的な相違を考慮すべきである、と我々は主張する。
本稿では,画像の意味的特徴とあいまいさを記述した,意味的埋め込みだけでなく,付随する不確実性埋め込みを用いて画像を表現することを提案する。
提案したIDMLフレームワークは,不確実性モデリングによるディープメトリック学習の性能向上を実現し,広く使用されているCUB-200-2011,Cars196,Stanford Online Productsデータセットの最先端結果を得る。
論文 参考訳(メタデータ) (2022-05-09T17:51:44Z) - Confusing Image Quality Assessment: Towards Better Augmented Reality
Experience [96.29124666702566]
我々はAR技術を仮想シーンと実シーンの重ね合わせとみなし、視覚的混乱を基本的な理論として紹介する。
ConFusing Image Quality Assessment (CFIQA)データベースが構築され、600個の参照画像と300個の歪画像とをペアに混合して生成する。
また、難解な画像品質をよりよく評価するために、CFIQAと呼ばれる客観的な計量も提案されている。
論文 参考訳(メタデータ) (2022-04-11T07:03:06Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - MUSIQ: Multi-scale Image Quality Transformer [22.908901641767688]
現在のIQA法は畳み込みニューラルネットワーク(CNN)に基づいている
マルチスケール画像品質変換器(MUSIQ)を設計し,サイズやアスペクト比の異なるネイティブ解像度画像を処理する。
提案手法は,マルチスケールの画像表現により,様々な粒度で画像品質を捉えることができる。
論文 参考訳(メタデータ) (2021-08-12T23:36:22Z) - Perceptually Optimizing Deep Image Compression [53.705543593594285]
平均二乗誤差(MSE)と$ell_p$ノルムは、ニューラルネットワークの損失の測定で大きく支配されている。
本稿では,定量的知覚モデルに対して,画像解析ネットワークを最適化するための異なるプロキシ手法を提案する。
論文 参考訳(メタデータ) (2020-07-03T14:33:28Z) - MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment [73.55944459902041]
本稿では,深層メタラーニングに基づく非参照IQA尺度を提案する。
まず、様々な歪みに対してNR-IQAタスクを収集する。
次にメタラーニングを用いて、多彩な歪みによって共有される事前知識を学習する。
大規模な実験により、提案された計量は最先端の技術を大きなマージンで上回ることを示した。
論文 参考訳(メタデータ) (2020-04-11T23:36:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。