論文の概要: Reference-Free Image Quality Metric for Degradation and Reconstruction Artifacts
- arxiv url: http://arxiv.org/abs/2405.02208v1
- Date: Wed, 1 May 2024 22:28:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 12:16:37.189199
- Title: Reference-Free Image Quality Metric for Degradation and Reconstruction Artifacts
- Title(参考訳): 劣化・復元アーチファクトの基準自由画像品質基準
- Authors: Han Cui, Alfredo De Goyeneche, Efrat Shimron, Boyuan Ma, Michael Lustig,
- Abstract要約: 品質要因予測器(QF)と呼ばれる基準のない品質評価ネットワークを開発する。
我々のQF予測器は7層からなる軽量で完全な畳み込みネットワークである。
JPEG圧縮画像パッチを入力としてランダムQFを受信し、対応するQFを正確に予測するように訓練する。
- 参考スコア(独自算出の注目度): 2.5282283486446753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image Quality Assessment (IQA) is essential in various Computer Vision tasks such as image deblurring and super-resolution. However, most IQA methods require reference images, which are not always available. While there are some reference-free IQA metrics, they have limitations in simulating human perception and discerning subtle image quality variations. We hypothesize that the JPEG quality factor is representatives of image quality measurement, and a well-trained neural network can learn to accurately evaluate image quality without requiring a clean reference, as it can recognize image degradation artifacts based on prior knowledge. Thus, we developed a reference-free quality evaluation network, dubbed "Quality Factor (QF) Predictor", which does not require any reference. Our QF Predictor is a lightweight, fully convolutional network comprising seven layers. The model is trained in a self-supervised manner: it receives JPEG compressed image patch with a random QF as input, is trained to accurately predict the corresponding QF. We demonstrate the versatility of the model by applying it to various tasks. First, our QF Predictor can generalize to measure the severity of various image artifacts, such as Gaussian Blur and Gaussian noise. Second, we show that the QF Predictor can be trained to predict the undersampling rate of images reconstructed from Magnetic Resonance Imaging (MRI) data.
- Abstract(参考訳): 画像品質評価(IQA)は、画像の劣化や超解像といった様々なコンピュータビジョンタスクに必須である。
しかし、ほとんどのIQAメソッドは参照画像を必要とするが、必ずしも利用できない。
参照なしIQAメトリクスはいくつかあるが、人間の知覚をシミュレートし、微妙な画像品質の変化を識別する制限がある。
JPEGの品質係数は画像品質測定の指標であると仮定し、事前の知識に基づいて画像劣化物を認識できるため、クリーンな参照を必要とせずに、よく訓練されたニューラルネットワークで画像品質を正確に評価することができると仮定する。
そこで我々は,参照不要な品質評価ネットワークであるQuality Factor (QF) Predictorを開発した。
我々のQF予測器は7層からなる軽量で完全な畳み込みネットワークである。
JPEG圧縮画像パッチを入力としてランダムQFを入力として受信し、対応するQFを正確に予測するように訓練する。
各種タスクに適用することで,モデルの汎用性を実証する。
まず、我々のQF予測器は、ガウスブラやガウスノイズなどの様々な画像アーティファクトの重症度を測定するために一般化することができる。
第2に、磁気共鳴画像(MRI)データから再構成した画像のアンダーサンプリング率を予測するために、QF予測器をトレーニングできることを示す。
関連論文リスト
- Dual-Branch Network for Portrait Image Quality Assessment [76.27716058987251]
ポートレート画像品質評価のためのデュアルブランチネットワーク(PIQA)を提案する。
我々は2つのバックボーンネットワーク(textiti.e., Swin Transformer-B)を使用して、肖像画全体と顔画像から高品質な特徴を抽出する。
我々は、画像シーンの分類と品質評価モデルであるLIQEを利用して、品質認識とシーン固有の特徴を補助的特徴として捉えている。
論文 参考訳(メタデータ) (2024-05-14T12:43:43Z) - Cross-IQA: Unsupervised Learning for Image Quality Assessment [3.2287957986061038]
本稿では,視覚変換器(ViT)モデルに基づく非参照画像品質評価(NR-IQA)手法を提案する。
提案手法は,ラベルのない画像データから画像品質の特徴を学習することができる。
実験結果から,Cross-IQAは低周波劣化情報の評価において最先端の性能が得られることが示された。
論文 参考訳(メタデータ) (2024-05-07T13:35:51Z) - Transformer-based No-Reference Image Quality Assessment via Supervised
Contrastive Learning [36.695247860715874]
本稿では,新しいコントラスト学習 (Contrastive Learning, SCL) と NR-IQA モデル SaTQA を提案する。
まず、SCLによる大規模合成データセット上にモデルをトレーニングし、様々な歪みタイプとレベルの画像の劣化特徴を抽出する。
画像から歪み情報を抽出するために,CNNインダクティブバイアスとTransformerの長期依存性モデリング機能を組み合わせることで,マルチストリームブロック(MSB)を組み込んだバックボーンネットワークを提案する。
7つの標準IQAデータセットの実験結果から、SaTQAは合成データセットと認証データセットの両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-12-12T06:01:41Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
知覚品質評価(IQA)のための学習ベースアプローチは、通常、知覚品質を正確に測定するために歪んだ画像と参照画像の両方を必要とする。
本研究では,変換器を用いた全参照IQAモデルの性能について検討する。
また,全教師モデルから盲人学生モデルへの半教師付き知識蒸留に基づくIQAの手法を提案する。
論文 参考訳(メタデータ) (2022-04-27T10:21:08Z) - Confusing Image Quality Assessment: Towards Better Augmented Reality
Experience [96.29124666702566]
我々はAR技術を仮想シーンと実シーンの重ね合わせとみなし、視覚的混乱を基本的な理論として紹介する。
ConFusing Image Quality Assessment (CFIQA)データベースが構築され、600個の参照画像と300個の歪画像とをペアに混合して生成する。
また、難解な画像品質をよりよく評価するために、CFIQAと呼ばれる客観的な計量も提案されている。
論文 参考訳(メタデータ) (2022-04-11T07:03:06Z) - Image Quality Assessment for Magnetic Resonance Imaging [4.05136808278614]
画像品質評価(IQA)アルゴリズムは、画像品質に対する人間の認識を再現することを目的としている。
我々は、MRIに関連する問題を解決するために訓練されたニューラルネットワークモデルの出力を使用する。
7人の訓練された放射線学者が歪んだ画像を評価し、その判断は35の異なる画像品質指標と相関した。
論文 参考訳(メタデータ) (2022-03-15T11:52:29Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
本稿では,CNNバックボーンとトランスフォーマーエンコーダを用いて特徴抽出を行うIQAフレームワークを提案する。
提案するフレームワークはFRモードとNRモードの両方と互換性があり、共同トレーニング方式が可能である。
論文 参考訳(メタデータ) (2021-12-01T13:23:00Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
劣化参照IQA(DR-IQA)という実用的な解を提案する。
DR-IQAはIRモデルの入力、劣化したイメージを参照として利用する。
私たちの結果は、フル参照設定のパフォーマンスに近いものもあります。
論文 参考訳(メタデータ) (2021-08-18T02:35:08Z) - A Shift-insensitive Full Reference Image Quality Assessment Model Based
on Quadratic Sum of Gradient Magnitude and LOG signals [7.0736273644584715]
本研究では,GMとLOG信号の2次和を用いたFR-IQAモデルを提案する。
実験の結果,提案モデルは3つの大規模主観的IQAデータベース上で堅牢に動作することがわかった。
論文 参考訳(メタデータ) (2020-12-21T17:41:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。