Ensemble Conformalized Quantile Regression for Probabilistic Time Series
Forecasting
- URL: http://arxiv.org/abs/2202.08756v1
- Date: Thu, 17 Feb 2022 16:54:20 GMT
- Title: Ensemble Conformalized Quantile Regression for Probabilistic Time Series
Forecasting
- Authors: Vilde Jensen, Filippo Maria Bianchi, Stian Norman Anfinsen
- Abstract summary: This paper presents a novel probabilistic forecasting method called ensemble conformalized quantile regression (EnCQR)
EnCQR constructs distribution-free and approximately marginally valid prediction intervals (PIs), is suitable for nonstationary and heteroscedastic time series data, and can be applied on top of any forecasting model.
The results demonstrate that EnCQR outperforms models based only on quantile regression or conformal prediction, and it provides sharper, more informative, and valid PIs.
- Score: 4.716034416800441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel probabilistic forecasting method called ensemble
conformalized quantile regression (EnCQR). EnCQR constructs distribution-free
and approximately marginally valid prediction intervals (PIs), is suitable for
nonstationary and heteroscedastic time series data, and can be applied on top
of any forecasting model, including deep learning architectures that are
trained on long data sequences. EnCQR exploits a bootstrap ensemble estimator,
which enables the use of conformal predictors for time series by removing the
requirement of data exchangeability. The ensemble learners are implemented as
generic machine learning algorithms performing quantile regression, which allow
the length of the PIs to adapt to local variability in the data. In the
experiments, we predict time series characterized by a different amount of
heteroscedasticity. The results demonstrate that EnCQR outperforms models based
only on quantile regression or conformal prediction, and it provides sharper,
more informative, and valid PIs.
Related papers
- Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
We propose a novel distribution-free approach based on conformal prediction framework and quantile regression.
We fill this void by introducing a novel conformal prediction method based on graph deep learning operators.
Our approach provides accurate coverage and archives state-of-the-art uncertainty quantification in relevant benchmarks.
arXiv Detail & Related papers (2025-02-13T16:12:17Z) - AdaPRL: Adaptive Pairwise Regression Learning with Uncertainty Estimation for Universal Regression Tasks [0.0]
We propose a novel adaptive pairwise learning framework for regression tasks (AdaPRL)
AdaPRL leverages the relative differences between data points and with deep probabilistic models to quantify the uncertainty associated with predictions.
Experiments show that AdaPRL can be seamlessly integrated into recently proposed regression frameworks to gain performance improvement.
arXiv Detail & Related papers (2025-01-10T09:19:10Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
We provide training examples for the in- and out-of-sample risks of ridge regression when the data points have arbitrary correlations.
We demonstrate that in this setting, the generalized cross validation estimator (GCV) fails to correctly predict the out-of-sample risk.
We further extend our analysis to the case where the test point has nontrivial correlations with the training set, a setting often encountered in time series forecasting.
arXiv Detail & Related papers (2024-08-08T17:27:29Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi-output conformalized quantile regression (AEnbMIMOCQR)
It enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate in a distribution-free manner.
Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable.
arXiv Detail & Related papers (2022-07-28T16:40:26Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - MECATS: Mixture-of-Experts for Quantile Forecasts of Aggregated Time
Series [11.826510794042548]
We introduce a mixture of heterogeneous experts framework called textttMECATS.
It simultaneously forecasts the values of a set of time series that are related through an aggregation hierarchy.
Different types of forecasting models can be employed as individual experts so that the form of each model can be tailored to the nature of the corresponding time series.
arXiv Detail & Related papers (2021-12-22T05:05:30Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Global Models for Time Series Forecasting: A Simulation Study [2.580765958706854]
We simulate time series from simple data generating processes (DGP), such as Auto Regressive (AR) and Seasonal AR, to complex DGPs, such as Chaotic Logistic Map, Self-Exciting Threshold Auto-Regressive, and Mackey-Glass equations.
The lengths and the number of series in the dataset are varied in different scenarios.
We perform experiments on these datasets using global forecasting models including Recurrent Neural Networks (RNN), Feed-Forward Neural Networks, Pooled Regression (PR) models, and Light Gradient Boosting Models (LGBM)
arXiv Detail & Related papers (2020-12-23T04:45:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.