Hybridizing Physical and Data-driven Prediction Methods for
Physicochemical Properties
- URL: http://arxiv.org/abs/2202.08804v1
- Date: Thu, 17 Feb 2022 18:15:03 GMT
- Title: Hybridizing Physical and Data-driven Prediction Methods for
Physicochemical Properties
- Authors: Fabian Jirasek, Robert Bamler, and Stephan Mandt
- Abstract summary: We present a generic way to hybridize physical and data-driven methods for predicting physicochemical properties.
The approach distills' the physical method's predictions into a prior model and combines it with sparse experimental data using Bayesian inference.
- Score: 19.50116420011026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a generic way to hybridize physical and data-driven methods for
predicting physicochemical properties. The approach `distills' the physical
method's predictions into a prior model and combines it with sparse
experimental data using Bayesian inference. We apply the new approach to
predict activity coefficients at infinite dilution and obtain significant
improvements compared to the data-driven and physical baselines and established
ensemble methods from the machine learning literature.
Related papers
- Hierarchical Matrix Completion for the Prediction of Properties of Binary Mixtures [3.0478550046333965]
We introduce a novel generic approach for improving data-driven models.
We lump components that behave similarly into chemical classes and model them jointly.
Using clustering leads to significantly improved predictions compared to an MCM without clustering.
arXiv Detail & Related papers (2024-10-08T14:04:30Z) - Data-Driven Computing Methods for Nonlinear Physics Systems with Geometric Constraints [0.7252027234425334]
This paper introduces a novel, data-driven framework that synergizes physics-based priors with advanced machine learning techniques.
Our framework showcases four algorithms, each embedding a specific physics-based prior tailored to a particular class of nonlinear systems.
The integration of these priors also enhances the expressive power of neural networks, enabling them to capture complex patterns typical in physical phenomena.
arXiv Detail & Related papers (2024-06-20T23:10:41Z) - Balancing Molecular Information and Empirical Data in the Prediction of Physico-Chemical Properties [8.649679686652648]
We propose a general method for combining molecular descriptors with representation learning.
The proposed hybrid model exploits chemical structure information using graph neural networks.
It automatically detects cases where structure-based predictions are unreliable, in which case it corrects them by representation-learning based predictions.
arXiv Detail & Related papers (2024-06-12T10:51:00Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Accurate melting point prediction through autonomous physics-informed
learning [52.217497897835344]
We present an algorithm for computing melting points by autonomously learning from coexistence simulations in the NPT ensemble.
We demonstrate how incorporating physical models of the solid-liquid coexistence evolution enhances the algorithm's accuracy and enables optimal decision-making.
arXiv Detail & Related papers (2023-06-23T07:53:09Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
We propose a new method for training predictive machine learning models for prescriptive applications.
This approach is based on tweaking the validation step in the standard training-validating-testing scheme.
Several experiments with synthetic data demonstrate promising results in reducing the prescription costs in both deterministic and real models.
arXiv Detail & Related papers (2021-10-22T15:03:20Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Calibrated Uncertainty for Molecular Property Prediction using Ensembles
of Message Passing Neural Networks [11.47132155400871]
We extend a message passing neural network designed specifically for predicting properties of molecules and materials.
We show that our approach results in accurate models for predicting molecular formation energies with calibrated uncertainty.
arXiv Detail & Related papers (2021-07-13T13:28:11Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Machine Learning in Thermodynamics: Prediction of Activity Coefficients
by Matrix Completion [34.7384528263504]
We propose a probabilistic matrix factorization model for predicting the activity coefficients in arbitrary binary mixtures.
Our method outperforms the state-of-the-art method that has been refined over three decades.
This opens perspectives to novel methods for predicting physico-chemical properties of binary mixtures.
arXiv Detail & Related papers (2020-01-29T03:16:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.