Tricritical point in the quantum Hamiltonian mean-field model
- URL: http://arxiv.org/abs/2202.08855v1
- Date: Thu, 17 Feb 2022 19:01:14 GMT
- Title: Tricritical point in the quantum Hamiltonian mean-field model
- Authors: Harald Schmid, Johannes Dieplinger, Andrea Solfanelli, Sauro Succi,
and Stefano Ruffo
- Abstract summary: We propose a generalization of the classical Hamiltonian mean-field model to fermionic particles.
We study the phase diagram and thermodynamic properties of the model in the canonical ensemble for ferromagnetic interactions.
Our results offer an intriguing example of tricriticality in a quantum system with long-range couplings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Engineering long-range interactions in experimental platforms has been
achieved with great success in a large variety of quantum systems in recent
years. Inspired by this progress, we propose a generalization of the classical
Hamiltonian mean-field model to fermionic particles. We study the phase diagram
and thermodynamic properties of the model in the canonical ensemble for
ferromagnetic interactions as a function of temperature and hopping. At zero
temperature, small charge fluctuations drive the many-body system through a
first order quantum phase transition from an ordered to a disordered phase at
zero temperature. At higher temperatures, the fluctuation-induced phase
transition remains first order initially and switches to second order only at a
tricritical point. Our results offer an intriguing example of tricriticality in
a quantum system with long-range couplings, which bears direct experimental
relevance. The analysis is performed by exact diagonalization and mean-field
theory.
Related papers
- Clustering of conditional mutual information and quantum Markov structure at arbitrary temperatures [0.0]
Recent investigations have unveiled exotic quantum phases that elude characterization by simple bipartite correlation functions.
In these phases, long-range entanglement arising from tripartite correlations plays a central role.
Our findings unveil that, even at low temperatures, a broad class of tripartite entanglement cannot manifest in the long-range regime.
arXiv Detail & Related papers (2024-07-08T11:30:12Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Simulating the Transverse Field Ising Model on the Kagome Lattice using a Programmable Quantum Annealer [0.0]
We embed the antiferromagnetic Ising model on the Kagome lattice on the latest architecture of D-Wave's quantum annealer, the Advantage2 prototype.
We show that under a finite longitudinal field the system exhibits a one-third magnetization plateau, consistent with a classical spin liquid state of reduced entropy.
An anneal-pause-quench protocol is then used to extract an experimental ensemble of states resulting from the equilibration of the model at finite transverse and longitudinal field.
arXiv Detail & Related papers (2023-10-10T15:22:01Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Detection of quantum phase boundary at finite temperatures in integrable
spin models [0.0]
Quantum phase transitions occur when quantum fluctuation destroys order at zero temperature.
With an increase in temperature, normally the thermal fluctuation wipes out any signs of this transition.
Here we identify a physical quantity that shows non-analytic behaviour at finite temperatures.
arXiv Detail & Related papers (2021-11-22T11:26:15Z) - Exponential clustering of bipartite quantum entanglement at arbitrary
temperatures [0.0]
We show that bi-partite long-range entanglement is unstable at arbitrary temperatures and exponentially decays with distance.
Our work reveals novel general aspects of low-temperature quantum physics and sheds light on the characterization of long-range entanglement.
arXiv Detail & Related papers (2021-08-27T10:12:47Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Observation of a quantum phase transition in the quantum Rabi model with
a single trapped ion [0.0]
Quantum phase transitions (QPTs) are usually associated with many-body systems with large degrees of freedom approaching the thermodynamic limit.
It has been realized that a QPT can occur in a simple system composed of only a two-level atom and a single-mode bosonic field.
We report the first experimental demonstration of a QPT in the quantum Rabi model using a single trapped ion.
arXiv Detail & Related papers (2021-02-10T13:03:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.