Observation of a quantum phase transition in the quantum Rabi model with
a single trapped ion
- URL: http://arxiv.org/abs/2102.05409v1
- Date: Wed, 10 Feb 2021 13:03:37 GMT
- Title: Observation of a quantum phase transition in the quantum Rabi model with
a single trapped ion
- Authors: M.-L. Cai, Z.-D. Liu, W.-D. Zhao, Y.-K. Wu, Q.-X. Mei, Y. Jiang, L.
He, X. Zhang, Z.-C. Zhou, L.-M. Duan
- Abstract summary: Quantum phase transitions (QPTs) are usually associated with many-body systems with large degrees of freedom approaching the thermodynamic limit.
It has been realized that a QPT can occur in a simple system composed of only a two-level atom and a single-mode bosonic field.
We report the first experimental demonstration of a QPT in the quantum Rabi model using a single trapped ion.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum phase transitions (QPTs) are usually associated with many-body
systems with large degrees of freedom approaching the thermodynamic limit. In
such systems, the many-body ground state shows abrupt changes at zero
temperature when the control parameter of the Hamiltonian is scanned across a
quantum critical point. Recently it has been realized that a QPT can also occur
in a simple system composed of only a two-level atom and a single-mode bosonic
field, described by the quantum Rabi model (QRM). Here we report the first
experimental demonstration of a QPT in the QRM using a single trapped ion. We
measure the average spin-up state population of the ion and the average phonon
number in its spatial oscillation mode as two order parameters and observe the
clear evidences of the phase transition via slow quench of the coupling between
the ion and its spatial motion. An experimental probe of the phase transitions
in a fundamental quantum optics model without imposing the thermodynamic limit
opens up a new window for the controlled study of QPTs and quantum critical
phenomena.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum metric and metrology with parametrically-driven Tavis-Cummings
models [4.419622364505575]
We study the quantum metric in a driven Tavis-Cummings model, comprised of multiple qubits interacting with a quantized photonic field.
We analytically solved the eigenenergies and eigenstates, and numerically simulated the system behaviors near the critical point.
arXiv Detail & Related papers (2023-12-13T14:20:03Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Walking with the atoms in a chemical bond : A perspective using quantum
phase transition [0.0]
Recent observation of a quantum phase transition in a single trapped 171 Yb ion in the Paul trap indicates the possibility of quantum phase transition in finite systems.
This perspective focuses on examining chemical processes at ultracold temperature as quantum phase transitions.
arXiv Detail & Related papers (2022-08-25T15:57:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Tricritical point in the quantum Hamiltonian mean-field model [0.0]
We propose a generalization of the classical Hamiltonian mean-field model to fermionic particles.
We study the phase diagram and thermodynamic properties of the model in the canonical ensemble for ferromagnetic interactions.
Our results offer an intriguing example of tricriticality in a quantum system with long-range couplings.
arXiv Detail & Related papers (2022-02-17T19:01:14Z) - Finite-component dynamical quantum phase transitions [0.0]
We show two types of dynamical quantum phase transitions (DQPTs) in a quantum Rabi model.
One refers to distinct phases according to long-time averaged order parameters, the other is focused on the non-analytical behavior emerging in the rate function of the Loschmidt echo.
We find the critical times at which the rate function becomes non-analytical, showing its associated critical exponent as well as the corrections introduced by a finite frequency ratio.
arXiv Detail & Related papers (2020-08-31T17:31:17Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.