Distributed Multi-Agent Reinforcement Learning with One-hop Neighbors and Compute Straggler Mitigation
- URL: http://arxiv.org/abs/2202.09019v3
- Date: Mon, 30 Dec 2024 21:34:08 GMT
- Title: Distributed Multi-Agent Reinforcement Learning with One-hop Neighbors and Compute Straggler Mitigation
- Authors: Baoqian Wang, Junfei Xie, Nikolay Atanasov,
- Abstract summary: This paper introduces a scalable MARL method called Distributed multi-Agent Reinforcement Learning with One-hop Neighbors (DARL1N)
DARL1N is an off-policy actor-critic method that addresses the curse of dimensionality by restricting information exchanges among the agents to one-hop neighbors.
To mitigate the straggler effect, we introduce a novel coded distributed learning architecture, which leverages detrimental coding theory to improve the resilience of the learning system to stragglers.
- Score: 18.067507472516063
- License:
- Abstract: Most multi-agent reinforcement learning (MARL) methods are limited in the scale of problems they can handle. With increasing numbers of agents, the number of training iterations required to find the optimal behaviors increases exponentially due to the exponentially growing joint state and action spaces. This paper tackles this limitation by introducing a scalable MARL method called Distributed multi-Agent Reinforcement Learning with One-hop Neighbors (DARL1N). DARL1N is an off-policy actor-critic method that addresses the curse of dimensionality by restricting information exchanges among the agents to one-hop neighbors when representing value and policy functions. Each agent optimizes its value and policy functions over a one-hop neighborhood, significantly reducing the learning complexity, yet maintaining expressiveness by training with varying neighbor numbers and states. This structure allows us to formulate a distributed learning framework to further speed up the training procedure. Distributed computing systems, however, contain straggler compute nodes, which are slow or unresponsive due to communication bottlenecks, software or hardware problems. To mitigate the detrimental straggler effect, we introduce a novel coded distributed learning architecture, which leverages coding theory to improve the resilience of the learning system to stragglers. Comprehensive experiments show that DARL1N significantly reduces training time without sacrificing policy quality and is scalable as the number of agents increases. Moreover, the coded distributed learning architecture improves training efficiency in the presence of stragglers.
Related papers
- Communication-Efficient Training Workload Balancing for Decentralized Multi-Agent Learning [20.683081355473664]
Decentralized Multi-agent Learning (DML) enables collaborative model training while preserving data privacy.
ComDML balances workload among agents through a decentralized approach.
ComDML can significantly reduce the overall training time while maintaining model accuracy, compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-05-01T20:03:37Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Promoting Generalization for Exact Solvers via Adversarial Instance
Augmentation [62.738582127114704]
Adar is a framework for understanding and improving the generalization of both imitation-learning-based (IL-based) and reinforcement-learning-based solvers (RL-based)
arXiv Detail & Related papers (2023-10-22T03:15:36Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
MADiff is a diffusion-based multi-agent learning framework.
It works as both a decentralized policy and a centralized controller.
Our experiments demonstrate that MADiff outperforms baseline algorithms across various multi-agent learning tasks.
arXiv Detail & Related papers (2023-05-27T02:14:09Z) - Diversity Through Exclusion (DTE): Niche Identification for
Reinforcement Learning through Value-Decomposition [63.67574523750839]
We propose a generic reinforcement learning (RL) algorithm that performs better than baseline deep Q-learning algorithms in environments with multiple variably-valued niches.
We show that agents trained this way can escape poor-but-attractive local optima to instead converge to harder-to-discover higher value strategies.
arXiv Detail & Related papers (2023-02-02T16:00:19Z) - Residual Q-Networks for Value Function Factorizing in Multi-Agent
Reinforcement Learning [0.0]
We propose a novel concept of Residual Q-Networks (RQNs) for Multi-Agent Reinforcement Learning (MARL)
The RQN learns to transform the individual Q-value trajectories in a way that preserves the Individual-Global-Max criteria (IGM)
The proposed method converges faster, with increased stability and shows robust performance in a wider family of environments.
arXiv Detail & Related papers (2022-05-30T16:56:06Z) - Local Advantage Networks for Cooperative Multi-Agent Reinforcement
Learning [1.1879716317856945]
This paper presents a new type of reinforcement learning algorithm for cooperative partially observable environments.
We use a dueling architecture to learn for each agent a decentralized best-response policies via individual advantage functions.
Evaluation on the StarCraft II multi-agent challenge benchmark shows that LAN reaches state-of-the-art performance.
arXiv Detail & Related papers (2021-12-23T10:55:33Z) - Relative Distributed Formation and Obstacle Avoidance with Multi-agent
Reinforcement Learning [20.401609420707867]
We propose a distributed formation and obstacle avoidance method based on multi-agent reinforcement learning (MARL)
Our method achieves better performance regarding formation error, formation convergence rate and on-par success rate of obstacle avoidance compared with baselines.
arXiv Detail & Related papers (2021-11-14T13:02:45Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Coding for Distributed Multi-Agent Reinforcement Learning [12.366967700730449]
Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances.
We propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers.
Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated.
arXiv Detail & Related papers (2021-01-07T00:22:34Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.