Squeezed light from a levitated nanoparticle at room temperature
- URL: http://arxiv.org/abs/2202.09322v2
- Date: Mon, 21 Feb 2022 08:38:55 GMT
- Title: Squeezed light from a levitated nanoparticle at room temperature
- Authors: Lorenzo Magrini, Victor A. Camarena-Ch\'avez, Constanze Bach, Aisling
Johnson and Markus Aspelmeyer
- Abstract summary: We use a fast heterodyne detection to reconstruct simultaneously optical quadratures, and observe a noise reduction of $9%pm0.5%$ below shot noise.
Our experiment offers a novel, cavity-less platform for squeezed-light enhanced sensing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum measurements of mechanical systems can produce optical squeezing via
ponderomotive forces. Its observation requires high environmental isolation and
efficient detection, typically achieved by using optical cavities and cryogenic
cooling. Here we realize these conditions by measuring the position of an
optically levitated nanoparticle at room temperature and without the overhead
of an optical cavity. We use a fast heterodyne detection to reconstruct
simultaneously orthogonal optical quadratures, and observe a noise reduction of
$9\%\pm0.5\%$ below shot noise. Our experiment offers a novel, cavity-less
platform for squeezed-light enhanced sensing. At the same time it delineates a
clear and simple strategy towards observation of stationary optomechanical
entanglement.
Related papers
- Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Room-temperature quantum optomechanics using an ultra-low noise cavity [0.0]
We demonstrate optomechanical squeezing at room temperature in a phononic-engineered membrane-in-the-middle system.
By using a high finesse cavity whose mirrors are patterned with phononic crystal structures, we reduce cavity frequency noise by more than 700-fold.
These advances enable operation within a factor of 2.5 of the Heisenberg limit, leading to squeezing of the probing field by 1.09 dB below the vacuum fluctuations.
arXiv Detail & Related papers (2023-09-26T16:27:32Z) - Optical self-cooling of a membrane oscillator in a cavity optomechanical
experiment at room temperature [0.0]
Thermal noise is a major obstacle to observing quantum behavior in macroscopic systems.
We show that further cooling is prevented by the excess classical noise of our laser source.
arXiv Detail & Related papers (2023-05-24T08:56:23Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Suppressing Recoil Heating in Levitated Optomechanics using Squeezed
Light [0.0]
We show that laser recoil can be arbitrarily suppressed by shining squeezed light onto an optically trapped nanoparticles.
We analyze the trade-off between measurement imprecision and back-action noise.
We predict that, with state-of-the-art squeezed light sources, laser heating can be reduced by at least 60%.
arXiv Detail & Related papers (2022-09-13T10:10:21Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Ponderomotive squeezing of light by a levitated nanoparticle in free
space [0.0]
A mechanically compliant element can be set into motion by the interaction with light.
This light-driven motion can give rise to ponderomotive correlations in the electromagnetic field.
cavities are often employed to enhance these correlations up to the point where they generate quantum squeezing of light.
arXiv Detail & Related papers (2022-02-18T07:57:36Z) - Dissipative Quantum Feedback in Measurements Using a Parametrically
Coupled Microcavity [0.0]
Micro- and nanoscale optical or microwave cavities are used in a wide range of classical applications and quantum science experiments.
Dissipative photon absorption can result in quantum feedback via in-loop field detection of the absorbed optical field.
We experimentally observe such unanticipated dissipative dynamics in optomechanical spectroscopy of sideband-cooled optomechanical crystal cavities.
arXiv Detail & Related papers (2021-09-29T15:12:45Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Open-cavity in closed-cycle cryostat as a quantum optics platform [47.50219326456544]
We present a fiber-based open Fabry-P'erot cavity in a closed-cycle cryostat exhibiting ultra-high mechanical stability.
This set of results manifests open-cavity in a closed-cycle cryostat as a versatile and powerful platform for low-temperature cavity QED experiments.
arXiv Detail & Related papers (2021-03-09T18:41:48Z) - Ultrafast viscosity measurement with ballistic optical tweezers [55.41644538483948]
Noninvasive viscosity measurements require integration times of seconds.
We demonstrate a four orders-of-magnitude improvement in speed, down to twenty microseconds.
We achieve this using the instantaneous velocity of a trapped particle in an optical tweezer.
arXiv Detail & Related papers (2020-06-29T00:09:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.