論文の概要: Supervising the Multi-Fidelity Race of Hyperparameter Configurations
- arxiv url: http://arxiv.org/abs/2202.09774v2
- Date: Thu, 1 Jun 2023 08:55:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-03 02:12:39.214128
- Title: Supervising the Multi-Fidelity Race of Hyperparameter Configurations
- Title(参考訳): ハイパーパラメータ構成の多元性競合の監視
- Authors: Martin Wistuba, Arlind Kadra, Josif Grabocka
- Abstract要約: 我々はベイズ最適化手法であるDyHPOを導入し、どのハイパーパラメータ構成を、実現可能な構成のレースでさらに訓練するかを学習する。
大規模実験による最先端ハイパーパラメータ最適化手法に対するDyHPOの顕著な優位性を示す。
- 参考スコア(独自算出の注目度): 22.408069485293666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-fidelity (gray-box) hyperparameter optimization techniques (HPO) have
recently emerged as a promising direction for tuning Deep Learning methods.
However, existing methods suffer from a sub-optimal allocation of the HPO
budget to the hyperparameter configurations. In this work, we introduce DyHPO,
a Bayesian Optimization method that learns to decide which hyperparameter
configuration to train further in a dynamic race among all feasible
configurations. We propose a new deep kernel for Gaussian Processes that embeds
the learning curve dynamics, and an acquisition function that incorporates
multi-budget information. We demonstrate the significant superiority of DyHPO
against state-of-the-art hyperparameter optimization methods through
large-scale experiments comprising 50 datasets (Tabular, Image, NLP) and
diverse architectures (MLP, CNN/NAS, RNN).
- Abstract(参考訳): 近年,多自由度(グレーボックス)ハイパーパラメータ最適化技術 (HPO) が深層学習法をチューニングするための有望な方向として登場した。
しかし、既存の手法ではhpo予算をハイパーパラメータ構成に最適に割り当てることができない。
そこで本研究では,動的レースにおいてどのハイパーパラメータ構成をトレーニングすべきかを学習するベイズ最適化手法であるdyhpoを提案する。
本稿では,学習曲線ダイナミクスを組み込んだガウス過程のための新しい深層カーネルと,マルチバジェット情報を含む獲得関数を提案する。
我々は,50のデータセット(Tabular, Image, NLP)と多様なアーキテクチャ(MLP, CNN/NAS, RNN)からなる大規模実験により,DyHPOの最先端ハイパーパラメータ最適化手法に対する大きな優位性を示す。
関連論文リスト
- Parameter Optimization with Conscious Allocation (POCA) [4.478575931884855]
ハイパーバンドベースの機械学習アプローチが最も効果的である。
私たちは出席します。
新人
Conscious Allocation (POCA) は、入力を適応的に割り当てるハイパーバンドベースのアルゴリズムである。
ハイパーパラメータの構成に予算を割り当てます
POCAは、両方の設定で強い設定を高速に見つける。
論文 参考訳(メタデータ) (2023-12-29T00:13:55Z) - Deep Ranking Ensembles for Hyperparameter Optimization [9.453554184019108]
本稿では,メタ学習型ニューラルネットワークが構成性能のランク付けに最適化され,アンサンブルによる不確実性をモデル化する手法を提案する。
12のベースライン、16のHPO検索スペース、86のデータセット/タスクからなる大規模実験プロトコルにおいて、本手法がHPOの新たな最先端結果を実現することを示す。
論文 参考訳(メタデータ) (2023-03-27T13:52:40Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
機能的事前設定のための代替的なプラクティスを模索する。
特に、より厳密な分布を事前訓練できるような、類似した関数のデータを持つシナリオを考察する。
提案手法は, 競合する手法の少なくとも3倍の効率で, 優れたハイパーパラメータを見つけることができることを示す。
論文 参考訳(メタデータ) (2022-07-07T04:42:54Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
我々は,テキストベースのトランスフォーマーHPOフレームワークであるOptFormerを紹介した。
実験の結果,OptFormerは少なくとも7種類のHPOアルゴリズムを模倣できることがわかった。
論文 参考訳(メタデータ) (2022-05-26T12:51:32Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
ハイパーパラメータチューニングのための勾配に基づくサブセット選択フレームワークを提案する。
ハイパーパラメータチューニングに勾配ベースのデータサブセットを用いることで、3$times$-30$times$のターンアラウンド時間とスピードアップが大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-03-15T19:25:01Z) - Automatic prior selection for meta Bayesian optimization with a case
study on tuning deep neural network optimizers [47.013395100497775]
このような高価なハイパーパラメータチューニング問題を効率的に解くための原理的アプローチを提案する。
BOの性能の鍵となるのは関数上の分布を指定および精製することであり、これは基礎となる関数の最適化を推論するために使われる。
我々は、一般的な画像やテキストデータセット上で、最先端に近いモデルの何万もの設定をトレーニングすることで、現実的なモデルトレーニング設定におけるアプローチを検証する。
論文 参考訳(メタデータ) (2021-09-16T20:46:26Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
ゼロ階超勾配(HOZOG)を用いた新しいハイパーパラメータ最適化法を提案する。
具体的には、A型制約最適化問題として、まずハイパーパラメータ最適化を定式化する。
次に、平均ゼロ階超勾配を用いてハイパーパラメータを更新する。
論文 参考訳(メタデータ) (2021-02-17T21:03:05Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Multi-level Training and Bayesian Optimization for Economical
Hyperparameter Optimization [12.92634461859467]
本稿では,ハイパーパラメータ最適化に必要なトレーニング時間の総量を削減するための効果的な手法を開発する。
光のトレーニングによって生じる近似的な性能測定をキャリブレーションするために, トランキャット付加法ガウス過程モデルを提案する。
このモデルに基づいて、逐次モデルに基づくアルゴリズムが開発され、構成空間のパフォーマンスプロファイルを生成し、最適なモデルを見つける。
論文 参考訳(メタデータ) (2020-07-20T09:03:02Z) - Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian
Optimization and Tuning Rules [0.6875312133832078]
トレーニングおよび検証セット上で,ネットワークの結果を評価し解析するための新しいアルゴリズムを構築した。
我々は、一連のチューニングルールを使用して、新しいハイパーパラメータと/またはハイパーパラメータ検索スペースを減らし、より良い組み合わせを選択する。
論文 参考訳(メタデータ) (2020-06-03T08:53:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。