An Efficient Smoothing and Thresholding Image Segmentation Framework
with Weighted Anisotropic-Isotropic Total Variation
- URL: http://arxiv.org/abs/2202.10115v5
- Date: Wed, 15 Nov 2023 22:57:49 GMT
- Title: An Efficient Smoothing and Thresholding Image Segmentation Framework
with Weighted Anisotropic-Isotropic Total Variation
- Authors: Kevin Bui, Yifei Lou, Fredrick Park, Jack Xin
- Abstract summary: We present a multi-stage image segmentation framework that incorporates a weighted difference of anisotropic isotropic variation (AITV)
In the second stage, we threshold the smoothed image by $K$-meansizer to obtain the final result.
- Score: 1.9581049654950413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we design an efficient, multi-stage image segmentation
framework that incorporates a weighted difference of anisotropic and isotropic
total variation (AITV). The segmentation framework generally consists of two
stages: smoothing and thresholding, thus referred to as SaT. In the first
stage, a smoothed image is obtained by an AITV-regularized Mumford-Shah (MS)
model, which can be solved efficiently by the alternating direction method of
multipliers (ADMM) with a closed-form solution of a proximal operator of the
$\ell_1 -\alpha \ell_2$ regularizer. Convergence of the ADMM algorithm is
analyzed. In the second stage, we threshold the smoothed image by $K$-means
clustering to obtain the final segmentation result. Numerical experiments
demonstrate that the proposed segmentation framework is versatile for both
grayscale and color images, efficient in producing high-quality segmentation
results within a few seconds, and robust to input images that are corrupted
with noise, blur, or both. We compare the AITV method with its original convex
TV and nonconvex TV$^p (0<p<1)$ counterparts, showcasing the qualitative and
quantitative advantages of our proposed method.
Related papers
- Image contrast enhancement based on the Schrödinger operator spectrum [0.276240219662896]
We propose a novel image contrast enhancement method based on projecting images onto the squared eigenfunctions of the two-dimensional Schr"odinger operator.
This projection relies on a design parameter, $gamma$, which controls pixel intensity during image reconstruction.
Results demonstrate that the proposed method effectively enhances image contrast while preserving the inherent characteristics of the original image.
arXiv Detail & Related papers (2024-06-04T12:37:11Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - Video Frame Interpolation with Many-to-many Splatting and Spatial
Selective Refinement [83.60486465697318]
We propose a fully differentiable Many-to-Many (M2M) splatting framework to interpolate frames efficiently.
For each input frame pair, M2M has a minuscule computational overhead when interpolating an arbitrary number of in-between frames.
We extend an M2M++ framework by introducing a flexible Spatial Selective Refinement component, which allows for trading computational efficiency for quality and vice versa.
arXiv Detail & Related papers (2023-10-29T09:09:32Z) - A Novel Truncated Norm Regularization Method for Multi-channel Color
Image Denoising [5.624787484101139]
This paper is proposed to denoise color images with a double-weighted truncated nuclear norm minus truncated Frobenius norm minimization (DtNFM) method.
Through exploiting the nonlocal self-similarity of the noisy image, the similar structures are gathered and a series of similar patch matrices are constructed.
Experiments on synthetic and real noise datasets demonstrate that the proposed method outperforms many state-of-the-art color image denoising methods.
arXiv Detail & Related papers (2023-07-16T03:40:35Z) - Difference of Anisotropic and Isotropic TV for Segmentation under Blur
and Poisson Noise [2.6381163133447836]
We adopt a smoothing-and-thresholding (SaT) segmentation framework that finds awise-smooth solution, followed by $k-means to segment the image.
Specifically for the image smoothing step, we replace the maximum noise in the MumfordShah model with a maximum variation of anisotropic total variation (AITV) as a regularization.
Convergence analysis is provided to validate the efficacy of the scheme.
arXiv Detail & Related papers (2023-01-06T01:14:56Z) - Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast [43.40192909920495]
Cross-view feature semantic consistency and intra(inter)-class compactness(dispersion) are explored.
We propose two novel pixel-to-prototype contrast regularization terms that are conducted cross different views and within per single view of an image.
Our method can be seamlessly incorporated into existing WSSS models without any changes to the base network.
arXiv Detail & Related papers (2021-10-14T01:44:57Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Multi-Margin based Decorrelation Learning for Heterogeneous Face
Recognition [90.26023388850771]
This paper presents a deep neural network approach to extract decorrelation representations in a hyperspherical space for cross-domain face images.
The proposed framework can be divided into two components: heterogeneous representation network and decorrelation representation learning.
Experimental results on two challenging heterogeneous face databases show that our approach achieves superior performance on both verification and recognition tasks.
arXiv Detail & Related papers (2020-05-25T07:01:12Z) - A Weighted Difference of Anisotropic and Isotropic Total Variation for
Relaxed Mumford-Shah Color and Multiphase Image Segmentation [2.6381163133447836]
We present a class of piecewise-constant image segmentation models that incorporate a difference of anisotropic and isotropic total variation.
In addition, a generalization to color image segmentation is discussed.
arXiv Detail & Related papers (2020-05-09T09:35:44Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
We come up with a Kullback-Leibler (KL) divergence-based Fuzzy C-Means (FCM) algorithm by incorporating a tight wavelet frame transform and a morphological reconstruction operation.
The proposed algorithm works well and comes with better segmentation performance than other comparative algorithms.
arXiv Detail & Related papers (2020-02-21T05:19:10Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM) algorithm incorporates a morphological reconstruction operation and a tight wavelet frame transform.
We present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value.
Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
arXiv Detail & Related papers (2020-02-14T10:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.