Graph Lifelong Learning: A Survey
- URL: http://arxiv.org/abs/2202.10688v1
- Date: Tue, 22 Feb 2022 06:14:07 GMT
- Title: Graph Lifelong Learning: A Survey
- Authors: Falih Gozi Febrinanto, Feng Xia, Kristen Moore, Chandra Thapa, Charu
Aggarwal
- Abstract summary: This paper focuses on the motivations, potentials, state-of-the-art approaches, and open issues of graph lifelong learning.
We expect extensive research and development interest in this emerging field.
- Score: 6.545297572977323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph learning substantially contributes to solving artificial intelligence
(AI) tasks in various graph-related domains such as social networks, biological
networks, recommender systems, and computer vision. However, despite its
unprecedented prevalence, addressing the dynamic evolution of graph data over
time remains a challenge. In many real-world applications, graph data
continuously evolves. Current graph learning methods that assume graph
representation is complete before the training process begins are not
applicable in this setting. This challenge in graph learning motivates the
development of a continuous learning process called graph lifelong learning to
accommodate the future and refine the previous knowledge in graph data. Unlike
existing survey papers that focus on either lifelong learning or graph learning
separately, this survey paper covers the motivations, potentials,
state-of-the-art approaches (that are well categorized), and open issues of
graph lifelong learning. We expect extensive research and development interest
in this emerging field.
Related papers
- Parametric Graph Representations in the Era of Foundation Models: A Survey and Position [69.48708136448694]
Graphs have been widely used in the past decades of big data and AI to model comprehensive relational data.
Identifying meaningful graph laws can significantly enhance the effectiveness of various applications.
arXiv Detail & Related papers (2024-10-16T00:01:31Z) - A Survey of Data-Efficient Graph Learning [16.053913182723143]
We introduce a novel concept of Data-Efficient Graph Learning (DEGL) as a research frontier.
We systematically review recent advances on several key aspects, including self-supervised graph learning, semi-supervised graph learning, and few-shot graph learning.
arXiv Detail & Related papers (2024-02-01T09:28:48Z) - Graph Domain Adaptation: Challenges, Progress and Prospects [61.9048172631524]
We propose graph domain adaptation as an effective knowledge-transfer paradigm across graphs.
GDA introduces a bunch of task-related graphs as source graphs and adapts the knowledge learnt from source graphs to the target graphs.
We outline the research status and challenges, propose a taxonomy, introduce the details of representative works, and discuss the prospects.
arXiv Detail & Related papers (2024-02-01T02:44:32Z) - A Comprehensive Survey on Graph Summarization with Graph Neural Networks [21.337505372979066]
In the past, most graph summarization techniques sought to capture the most important part of a graph statistically.
Today, the high dimensionality and complexity of modern graph data are making deep learning techniques more popular.
Our investigation includes a review of the current state-of-the-art approaches, including recurrent GNNs, convolutional GNNs, graph autoencoders, and graph attention networks.
arXiv Detail & Related papers (2023-02-13T05:43:24Z) - Curriculum Graph Machine Learning: A Survey [51.89783017927647]
curriculum graph machine learning (Graph CL) integrates the strength of graph machine learning and curriculum learning.
This paper comprehensively overview approaches on Graph CL and present a detailed survey of recent advances in this direction.
arXiv Detail & Related papers (2023-02-06T16:59:25Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Graph Learning and Its Advancements on Large Language Models: A Holistic Survey [37.01696685233113]
This survey focuses on the most recent advancements in integrating graph learning with pre-trained language models.
We provide a holistic review that analyzes current works from the perspective of graph structure, and discusses the latest applications, trends, and challenges in graph learning.
arXiv Detail & Related papers (2022-12-17T22:05:07Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Graph Learning: A Survey [38.245120261668816]
We present a comprehensive overview on the state-of-the-art of graph learning.
Special attention is paid to four categories of existing graph learning methods, including graph signal processing, matrix factorization, random walk, and deep learning.
We examine graph learning applications in areas such as text, images, science, knowledge graphs, and optimization.
arXiv Detail & Related papers (2021-05-03T09:06:01Z) - Graph Self-Supervised Learning: A Survey [73.86209411547183]
Self-supervised learning (SSL) has become a promising and trending learning paradigm for graph data.
We present a timely and comprehensive review of the existing approaches which employ SSL techniques for graph data.
arXiv Detail & Related papers (2021-02-27T03:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.