論文の概要: Ensembling Handcrafted Features with Deep Features: An Analytical Study
for Classification of Routine Colon Cancer Histopathological Nuclei Images
- arxiv url: http://arxiv.org/abs/2202.10694v1
- Date: Tue, 22 Feb 2022 06:48:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-23 15:33:04.679454
- Title: Ensembling Handcrafted Features with Deep Features: An Analytical Study
for Classification of Routine Colon Cancer Histopathological Nuclei Images
- Title(参考訳): 深部特徴を有する手作りの特徴 : 日常性大腸癌病理組織核画像の分類に関する解析的研究
- Authors: Suvidha Tripathi and Satish Kumar Singh
- Abstract要約: 我々は,F1-measure,Precision,Recall,AUC,Cross-Entropy Lossを用いて,提案手法の性能解析を行った。
以上の結果から,DL特徴のアンサンブルがモデル全体の性能を著しく向上させることが明らかとなった。
- 参考スコア(独自算出の注目度): 13.858624044986815
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The use of Deep Learning (DL) based methods in medical histopathology images
have been one of the most sought after solutions to classify, segment, and
detect diseased biopsy samples. However, given the complex nature of medical
datasets due to the presence of intra-class variability and heterogeneity, the
use of complex DL models might not give the optimal performance up to the level
which is suitable for assisting pathologists. Therefore, ensemble DL methods
with the scope of including domain agnostic handcrafted Features (HC-F)
inspired this work. We have, through experiments, tried to highlight that a
single DL network (domain-specific or state of the art pre-trained models)
cannot be directly used as the base model without proper analysis with the
relevant dataset. We have used F1-measure, Precision, Recall, AUC, and
Cross-Entropy Loss to analyse the performance of our approaches. We observed
from the results that the DL features ensemble bring a marked improvement in
the overall performance of the model, whereas, domain agnostic HC-F remains
dormant on the performance of the DL models.
- Abstract(参考訳): 医学組織病理画像における深層学習法(dl)を用いた手法は, 病的生検試料の分類, 分別, 検出に最も求められている方法の一つである。
しかしながら、クラス内変異性と多様性の存在による医療データセットの複雑な性質を考えると、複雑なdlモデルの使用は、病理学者の補助に適したレベルまで最適な性能を与えないかもしれない。
そのため、ドメインに依存しない手作り特徴(HC-F)を含む範囲のDL手法が本研究に影響を与えた。
実験を通じて、関連するデータセットを適切に解析することなく、単一のdlネットワーク(ドメイン固有あるいは事前学習されたモデルの状態)をベースモデルとして直接使用できないことを強調しようと試みた。
我々は,F1-measure,Precision,Recall,AUC,Cross-Entropy Lossを用いて,提案手法の性能解析を行った。
以上の結果から,DL特徴のアンサンブルがモデル全体の性能を著しく向上させるのに対し,ドメインに依存しないHC-FはDLモデルの性能に休息を保っていることが明らかとなった。
関連論文リスト
- Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
本モデルでは, 完全教師付きベースラインモデルにより, オンパー性能が向上することを示す。
また、未確認データドメインでテストした場合、完全に教師付きモデルと弱い教師付きモデルの両方のパフォーマンス低下も観察する。
論文 参考訳(メタデータ) (2024-11-04T12:24:33Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
知識分解」は、特定の医療課題のパフォーマンス向上を目的としている。
我々はLow-Rank Knowledge Decomposition(LoRKD)という新しいフレームワークを提案する。
LoRKDは、低ランクのエキスパートモジュールと効率的な知識分離畳み込みを組み込むことで、グラデーションを異なるタスクから明確に分離する。
論文 参考訳(メタデータ) (2024-09-29T03:56:21Z) - CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
肺がんサブタイプを多次元・多モード画像で正確に分類するための新しい深層学習ネットワークを提案する。
提案モデルの強みは, 対のCT-病理画像セットと独立のCT画像セットの両方を動的に処理できることにある。
また,ネットワーク学習を通じてモダリティ関係を定量的にマッピングするコントラスト制約モジュールも開発した。
論文 参考訳(メタデータ) (2024-07-18T01:42:00Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
人工知能(AI)の最近の進歩は、医療画像と計算病理に革命をもたらしている。
デジタル全スライド画像(WSI)の解析における一定の課題は、何万ものタイルレベルの画像埋め込みをスライドレベルの表現に集約する問題である。
本研究は,9つの臨床的課題を対象とした10種類のスライドレベルのアグリゲーション手法のベンチマーク分析を行った。
論文 参考訳(メタデータ) (2024-07-10T17:00:57Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
虚血性脳卒中における血栓塞栓源の同定は治療と二次予防に不可欠である。
本研究は,虚血性脳梗塞の発生源を分類するためのエンボリのデジタル病理学における自己教師型深層学習アプローチについて述べる。
論文 参考訳(メタデータ) (2024-05-01T23:40:12Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
本論文は,異なるモダリティから異なるパターンと共有パターンをカプセル化することにより,ドメイン間データから堅牢な表現を学習できる新しいモデルの実現を目的とする。
正常な臨床試験で得られたCTおよびMRI肝データに対する試験は、提案したモデルが他のすべてのベースラインを大きなマージンで上回っていることを示している。
論文 参考訳(メタデータ) (2020-06-08T07:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。