Automatic Test Pattern Generation for Robust Quantum Circuit Testing
- URL: http://arxiv.org/abs/2202.10697v4
- Date: Wed, 4 Sep 2024 15:50:41 GMT
- Title: Automatic Test Pattern Generation for Robust Quantum Circuit Testing
- Authors: Kean Chen, Mingsheng Ying,
- Abstract summary: We introduce the stabilizer projector decomposition (SPD) for representing the quantum test pattern.
We construct the test application (i.e., state preparation and measurement) using Clifford-only circuits.
We develop an SPD generation algorithm, as well as several acceleration techniques which can exploit both locality and sparsity in generating SPDs.
- Score: 8.860149267706221
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum circuit testing is essential for detecting potential faults in realistic quantum devices, while the testing process itself also suffers from the inexactness and unreliability of quantum operations. This paper alleviates the issue by proposing a novel framework of automatic test pattern generation (ATPG) for robust testing of logical quantum circuits. We introduce the stabilizer projector decomposition (SPD) for representing the quantum test pattern, and construct the test application (i.e., state preparation and measurement) using Clifford-only circuits, which are rather robust and efficient as evidenced in the fault-tolerant quantum computation. However, it is generally hard to generate SPDs due to the exponentially growing number of the stabilizer projectors. To circumvent this difficulty, we develop an SPD generation algorithm, as well as several acceleration techniques which can exploit both locality and sparsity in generating SPDs. The effectiveness of our algorithms are validated by 1) theoretical guarantees under reasonable conditions, 2) experimental results on commonly used benchmark circuits, such as Quantum Fourier Transform (QFT), Quantum Volume (QV) and Bernstein-Vazirani (BV) in IBM Qiskit.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Long-lived Particles Anomaly Detection with Parametrized Quantum
Circuits [0.0]
We propose an anomaly detection algorithm based on a parametrized quantum circuit.
This algorithm has been trained on a classical computer and tested with simulations as well as on real quantum hardware.
arXiv Detail & Related papers (2023-12-07T11:50:42Z) - GASP -- A Genetic Algorithm for State Preparation [0.0]
We present a genetic algorithm for state preparation (GASP) which generates relatively low-depth quantum circuits for initialising a quantum computer in a specified quantum state.
GASP can produce more efficient circuits of a given accuracy with lower depth and gate counts than other methods.
arXiv Detail & Related papers (2023-02-22T04:41:01Z) - Testing quantum computers with the protocol of quantum state matching [0.0]
The presence of noise in quantum computers hinders their effective operation.
We suggest the application of the so-called quantum state matching protocol for testing purposes.
For systematically varied inputs we find that the device with the smaller quantum volume performs better on our tests than the one with larger quantum volume.
arXiv Detail & Related papers (2022-10-18T08:25:34Z) - Experimental Implementation of an Efficient Test of Quantumness [49.588006756321704]
A test of quantumness is a protocol where a classical user issues challenges to a quantum device to determine if it exhibits non-classical behavior.
Recent attempts to implement such tests on current quantum computers rely on either interactive challenges with efficient verification, or non-interactive challenges with inefficient (exponential time) verification.
arXiv Detail & Related papers (2022-09-28T18:00:04Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Quantum Neuron with Separable-State Encoding [0.0]
It is not yet possible to test advanced quantum neuron models on a large scale in currently available quantum processors.
We propose a quantum perceptron (QP) model that uses a reduced number of multi-qubit gates.
We demonstrate the performance of the proposed model by implementing a few qubits version of the QP in a simulated quantum computer.
arXiv Detail & Related papers (2022-02-16T19:26:23Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Test of Quantumness with Small-Depth Quantum Circuits [1.90365714903665]
Recently, we have shown how to construct a test of quantumness based on the learning with errors (LWE) assumption.
This test has lead to several cryptographic applications.
In this paper, we show that this test of quantumness, and essentially all the above applications, can actually be implemented by a very weak class of quantum circuits.
arXiv Detail & Related papers (2021-05-12T08:16:20Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.