Quantum Neuron with Separable-State Encoding
- URL: http://arxiv.org/abs/2202.08306v1
- Date: Wed, 16 Feb 2022 19:26:23 GMT
- Title: Quantum Neuron with Separable-State Encoding
- Authors: London A. Cavaletto, Luca Candelori, Alex Matos-Abiague
- Abstract summary: It is not yet possible to test advanced quantum neuron models on a large scale in currently available quantum processors.
We propose a quantum perceptron (QP) model that uses a reduced number of multi-qubit gates.
We demonstrate the performance of the proposed model by implementing a few qubits version of the QP in a simulated quantum computer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of advanced quantum neuron models for pattern recognition
applications requires fault tolerance. Therefore, it is not yet possible to
test such models on a large scale in currently available quantum processors. As
an alternative, we propose a quantum perceptron (QP) model that uses a reduced
number of multi-qubit gates and is therefore less susceptible to quantum errors
in current actual quantum computers with limited tolerance. The proposed
quantum algorithm is superior to its classical counterpart, although since it
does not take full advantage of quantum entanglement, it provides a lower
encoding power than other quantum algorithms using multiple qubit entanglement.
However, the use of separable-sate encoding allows for testing the algorithm
and different training schemes at a large scale in currently available
non-fault tolerant quantum computers. We demonstrate the performance of the
proposed model by implementing a few qubits version of the QP in a simulated
quantum computer. The proposed QP uses an N-ary encoding of the binary input
data characterizing the patterns. We develop a hybrid (quantum-classical)
training procedure for simulating the learning process of the QP and test their
efficiency.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Explicit quantum surrogates for quantum kernel models [0.6834295298053009]
We propose a quantum-classical hybrid algorithm to create an explicit quantum surrogate (EQS) for trained implicit models.
This involves diagonalizing an observable from the implicit model and constructing a corresponding quantum circuit.
The EQS framework reduces prediction costs, mitigates barren plateau issues, and combines the strengths of both QML approaches.
arXiv Detail & Related papers (2024-08-06T07:15:45Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
We propose a Decision Diagram-based quantum equivalence checking approach, QuBEC, that requires less latency compared to existing techniques.
Our proposed methodology reduces verification time on certain benchmark circuits by up to $271.49 times$.
arXiv Detail & Related papers (2023-09-19T16:12:37Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
We propose an approach to implementing a scalable quantum neural network (SQNN) by utilizing the quantum resource of multiple small-size quantum devices cooperatively.
In an SQNN system, several quantum devices are used as quantum feature extractors, extracting local features from an input instance in parallel, and a quantum device works as a quantum predictor.
arXiv Detail & Related papers (2022-08-04T20:35:03Z) - Natural parameterized quantum circuit [0.0]
We introduce the natural parameterized quantum circuit (NPQC) that can be initialised with a Euclidean quantum geometry.
For a general class of quantum circuits, the NPQC has the minimal quantum Cram'er-Rao bound.
Our results can be used to enhance currently available quantum processors.
arXiv Detail & Related papers (2021-07-29T14:54:04Z) - Distributed Quantum Computing with QMPI [11.71212583708166]
We introduce an extension of the Message Passing Interface (MPI) to enable high-performance implementations of distributed quantum algorithms.
In addition to a prototype implementation of quantum MPI, we present a performance model for distributed quantum computing, SENDQ.
arXiv Detail & Related papers (2021-05-03T18:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.