論文の概要: Quantum walk in a reinforced free-energy landscape: Quantum annealing
with reinforcement
- arxiv url: http://arxiv.org/abs/2202.10908v2
- Date: Thu, 14 Jul 2022 15:55:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-24 06:00:38.988533
- Title: Quantum walk in a reinforced free-energy landscape: Quantum annealing
with reinforcement
- Title(参考訳): 強化自由エネルギー景観における量子ウォーク--強化による量子アニーリング
- Authors: Abolfazl Ramezanpour
- Abstract要約: 強化は、システムの指数的に小さなエネルギーギャップを回避できる戦略の1つである。
本研究では、強化のための構成空間における局所エントロピーを取り上げ、アルゴリズムを多くの容易かつ難しい最適化問題に適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Providing an optimal path to a quantum annealing algorithm is key to finding
good approximate solutions to computationally hard optimization problems.
Reinforcement is one of the strategies that can be used to circumvent the
exponentially small energy gaps of the system in the annealing process. Here a
time-dependent reinforcement term is added to the Hamiltonian in order to give
lower energies to the most probable states of the evolving system. In this
study, we take a local entropy in the configuration space for the reinforcement
and apply the algorithm to a number of easy and hard optimization problems. The
reinforced algorithm performs better than the standard quantum annealing
algorithm in the quantum search problem, where the optimal parameters behave
very differently depending on the number of solutions. Moreover, the
reinforcements can change the discontinuous phase transitions of the mean-field
p-spin model ($p>2$) to a continuous transition. The algorithm's performance in
the binary perceptron problem is also superior to that of the standard quantum
annealing algorithm, which already works better than a classical simulated
annealing algorithm.
- Abstract(参考訳): 量子アニールアルゴリズムへの最適経路を提供することは、計算的に難しい最適化問題の近似解を見つけるための鍵となる。
強化は、アニーリングプロセスにおけるシステムの指数関数的に小さいエネルギーギャップを回避するために使用できる戦略の1つである。
ここで、ハミルトニアンに時間依存の強化項を加え、進化する系の最も可能性の高い状態に対して低いエネルギーを与える。
本研究では、強化のための構成空間における局所エントロピーを取り上げ、アルゴリズムを多くの容易かつ難しい最適化問題に適用する。
強化されたアルゴリズムは、最適パラメータが解数によって非常に異なる振る舞いをする量子探索問題において、標準的な量子アニールアルゴリズムよりも優れている。
さらに、強化は平均場p-スピンモデルの不連続相転移(p>2$)を連続遷移に変換することができる。
バイナリパーセプトロン問題におけるアルゴリズムの性能は、従来のシミュレートされたアニールアルゴリズムよりも優れている標準的な量子アニールアルゴリズムよりも優れている。
関連論文リスト
- Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
近年,変分量子回路の最適化のためのQNGアルゴリズムが提案されている。
本研究では、この離散時間解が一般化形式を与えることを示すために、QNG力を持つランゲヴィン方程式を用いる。
論文 参考訳(メタデータ) (2024-09-03T15:21:16Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
線形深度回路を用いた最適化問題に対する変分量子アルゴリズムを提案する。
我々のアルゴリズムは、ターゲット量子関数の各項を制御するために設計されたハミルトン生成器からなるアンサッツを使用する。
性能と資源最小化のアプローチは、潜在的な量子計算上の利点の候補として有望である、と結論付けます。
論文 参考訳(メタデータ) (2024-04-24T18:49:07Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
本稿では,二項問題の近似解を計算するためのハイブリッド量子古典アルゴリズムを提案する。
我々は、重み付き最大カットまたはイジング・ハミルトン演算子をブロック符号化するユニタリおよびエルミート演算子を実装するために浅深さ量子回路を用いる。
この作用素の変動量子状態への期待を測定すると、量子系の変動エネルギーが得られる。
論文 参考訳(メタデータ) (2023-06-10T23:28:13Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum-Enhanced Greedy Combinatorial Optimization Solver [12.454028945013924]
最適化問題を解くために反復量子最適化アルゴリズムを導入する。
72量子ビット以下のプログラム可能な超伝導量子系に量子アルゴリズムを実装した。
量子アルゴリズムは古典的な欲求よりも体系的に優れており、量子エンハンスメントのシグナルとなる。
論文 参考訳(メタデータ) (2023-03-09T18:59:37Z) - Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy [1.14219428942199]
繰り返し改善戦略において量子アニーリングを利用するために,整数最適化問題のイジング定式化を提案する。
基底状態と候補解との重なりがしきい値を超えた場合, 完全に連結されたフェロポッツモデルに対して一階相転移を回避できることを解析的に示す。
論文 参考訳(メタデータ) (2022-11-08T02:12:49Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
有名な最小二乗モンテカルロ (LSM) アルゴリズムは、線形最小二乗回帰とモンテカルロシミュレーションを組み合わせることで、最適停止理論の問題を解決する。
プロセスへの量子アクセス、最適な停止時間を計算するための量子回路、モンテカルロの量子技術に基づく量子LSMを提案する。
論文 参考訳(メタデータ) (2021-11-30T12:21:41Z) - Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation
Algorithm [7.581898299650999]
我々はQQRA(Quantum Qubit Rotation Algorithm)という単純なアルゴリズムを導入する。
最大カット問題の近似解は 1 に近い確率で得られる。
我々は、よく知られた量子近似最適化アルゴリズムと古典的なゲーマン・ウィリアムソンアルゴリズムと比較する。
論文 参考訳(メタデータ) (2021-10-15T11:19:48Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。