Subtyping brain diseases from imaging data
- URL: http://arxiv.org/abs/2202.10945v1
- Date: Wed, 16 Feb 2022 19:13:53 GMT
- Title: Subtyping brain diseases from imaging data
- Authors: Junhao Wen, Erdem Varol, Zhijian Yang, Gyujoon Hwang, Dominique Dwyer,
Anahita Fathi Kazerooni, Paris Alexandros Lalousis, Christos Davatzikos
- Abstract summary: Clinical neuroscience and cancer imaging have been two areas in which machine learning has offered particular promise.
Current chapter focuses on ML methods, especially semi-supervised clustering, that seek disease subtypes.
Alzheimer Disease and its prodromal stages, psychosis, depression, autism, and brain cancer are discussed.
- Score: 3.5849534055078767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The imaging community has increasingly adopted machine learning (ML) methods
to provide individualized imaging signatures related to disease diagnosis,
prognosis, and response to treatment. Clinical neuroscience and cancer imaging
have been two areas in which ML has offered particular promise. However, many
neurologic and neuropsychiatric diseases, as well as cancer, are often
heterogeneous in terms of their clinical manifestations, neuroanatomical
patterns or genetic underpinnings. Therefore, in such cases, seeking a single
disease signature might be ineffectual in delivering individualized precision
diagnostics. The current chapter focuses on ML methods, especially
semi-supervised clustering, that seek disease subtypes using imaging data. Work
from Alzheimer Disease and its prodromal stages, psychosis, depression, autism,
and brain cancer are discussed. Our goal is to provide the readers with a broad
overview in terms of methodology and clinical applications.
Related papers
- Early diagnosis of Alzheimer's disease from MRI images with deep learning model [0.7673339435080445]
Alzheimer's disease is the most common cause of dementia worldwide.
classification of dementia involves approaches such as medical history review, neuropsychological tests, and magnetic resonance imaging (MRI)
In this article, a pre-trained convolutional neural network has been applied to the DEMNET dementia network to extract key features from AD images.
arXiv Detail & Related papers (2024-09-27T15:07:26Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - Dimensional Neuroimaging Endophenotypes: Neurobiological Representations
of Disease Heterogeneity Through Machine Learning [11.653182438505558]
We first present a systematic literature overview of studies using machine learning and multimodal MRI to unravel disease heterogeneity in various neuropsychiatric and neurodegenerative disorders.
We then summarize relevant machine learning methodologies and discuss an emerging paradigm which we call dimensional neuroimaging endophenotype (DNE)
DNE dissects the neurobiological heterogeneity of neuropsychiatric and neurodegenerative disorders into a low dimensional yet informative, quantitative brain phenotypic representation.
arXiv Detail & Related papers (2024-01-17T16:31:48Z) - GestaltMML: Enhancing Rare Genetic Disease Diagnosis through Multimodal Machine Learning Combining Facial Images and Clinical Texts [8.805728428427457]
We introduce a multimodal machine learning (MML) approach solely based on the Transformer architecture.
It integrates facial images, demographic information (age, sex, ethnicity), and clinical notes to improve prediction accuracy.
arXiv Detail & Related papers (2023-12-23T18:40:25Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4V is OpenAI's newest model for multimodal medical diagnosis.
Our evaluation encompasses 17 human body systems.
GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy.
It faces significant challenges in disease diagnosis and generating comprehensive reports.
arXiv Detail & Related papers (2023-10-15T18:32:27Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Deep grading for MRI-based differential diagnosis of Alzheimer's disease
and Frontotemporal dementia [0.0]
Alzheimer's disease and Frontotemporal dementia are common forms of neurodegenerative dementia.
Current structural imaging methods mainly focus on the detection of each disease but rarely on their differential diagnosis.
We propose a deep learning based approach for both problems of disease detection and differential diagnosis.
arXiv Detail & Related papers (2022-11-25T13:25:18Z) - Interpretable Graph Convolutional Network of Multi-Modality Brain
Imaging for Alzheimer's Disease Diagnosis [14.894215698742924]
We propose an interpretable Graph Convolutional Network framework for the identification and classification of Alzheimer's disease.
We usedGrad-CAM technique to quantify the most discriminative features identified by GCN from brain connectivity patterns.
arXiv Detail & Related papers (2022-04-27T20:43:11Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.