Generating Synthetic Mobility Networks with Generative Adversarial
Networks
- URL: http://arxiv.org/abs/2202.11028v1
- Date: Tue, 22 Feb 2022 16:59:35 GMT
- Title: Generating Synthetic Mobility Networks with Generative Adversarial
Networks
- Authors: Giovanni Mauro, Massimiliano Luca, Antonio Longa, Bruno Lepri, Luca
Pappalardo
- Abstract summary: MoGAN is a model based on Generative Adversarial Networks (GANs) to generate realistic mobility networks.
We conduct experiments on public datasets of bike and taxi rides to show that MoGAN outperforms the classical Gravity and Radiation models.
- Score: 3.3528341717949197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasingly crucial role of human displacements in complex societal
phenomena, such as traffic congestion, segregation, and the diffusion of
epidemics, is attracting the interest of scientists from several disciplines.
In this article, we address mobility network generation, i.e., generating a
city's entire mobility network, a weighted directed graph in which nodes are
geographic locations and weighted edges represent people's movements between
those locations, thus describing the entire mobility set flows within a city.
Our solution is MoGAN, a model based on Generative Adversarial Networks (GANs)
to generate realistic mobility networks. We conduct extensive experiments on
public datasets of bike and taxi rides to show that MoGAN outperforms the
classical Gravity and Radiation models regarding the realism of the generated
networks. Our model can be used for data augmentation and performing
simulations and what-if analysis.
Related papers
- Predicting Large-scale Urban Network Dynamics with Energy-informed Graph Neural Diffusion [51.198001060683296]
Networked urban systems facilitate the flow of people, resources, and services.<n>Current models such as graph neural networks have shown promise but face a trade-off between efficacy and efficiency.<n>This paper addresses this trade-off by drawing inspiration from physical laws to inform essential model designs.
arXiv Detail & Related papers (2025-07-31T01:24:01Z) - Graph Network Modeling Techniques for Visualizing Human Mobility Patterns [8.537183852577687]
We develop a methodology by embedding graphs into a continuous space, which alleviates issues related to fast graph matching, graph time-series modeling, and visualization of mobility dynamics.
We demonstrate how mobility data collected from trajectories could be transformed into network structures and patterns of mobility flow changes, and can be used for downstream tasks reporting approx 40% decrease in error on average in matched graphs vs unmatched ones.
arXiv Detail & Related papers (2025-04-04T02:21:44Z) - Identifying and Characterising Higher Order Interactions in Mobility Networks Using Hypergraphs [1.1060425537315088]
We propose co-visitation hypergraphs, a model that leverages temporal observation windows to extract group interactions between locations.
Using frequent pattern mining, our approach constructs hypergraphs that capture dynamic mobility behaviors across different spatial and temporal scales.
Our results demonstrate that our hypergraph-based mobility analysis framework is a valuable tool with potential applications in diverse fields.
arXiv Detail & Related papers (2025-03-24T11:29:06Z) - NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records.
We address challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection.
arXiv Detail & Related papers (2024-12-30T00:47:49Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Deep Learning-driven Mobile Traffic Measurement Collection and Analysis [0.43512163406552007]
In this thesis, we harness the powerful hierarchical feature learning abilities of Deep Learning (DL) techniques in both spatial and temporal domains.
We develop solutions for precise city-scale mobile traffic analysis and forecasting.
arXiv Detail & Related papers (2024-10-14T06:53:45Z) - Transformers from Diffusion: A Unified Framework for Neural Message Passing [79.9193447649011]
Message passing neural networks (MPNNs) have become a de facto class of model solutions.<n>We propose an energy-constrained diffusion model, which integrates the inductive bias of diffusion with layer-wise constraints of energy.<n>Building on these insights, we devise a new class of message passing models, dubbed Transformers (DIFFormer), whose global attention layers are derived from the principled energy-constrained diffusion framework.
arXiv Detail & Related papers (2024-09-13T17:54:41Z) - Deep Activity Model: A Generative Approach for Human Mobility Pattern Synthesis [11.90100976089832]
We develop a novel generative deep learning approach for human mobility modeling and synthesis.
It incorporates both activity patterns and location trajectories using open-source data.
The model can be fine-tuned with local data, allowing it to adapt to accurately represent mobility patterns across diverse regions.
arXiv Detail & Related papers (2024-05-24T02:04:10Z) - Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-05-06T06:23:06Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Complexity-aware Large Scale Origin-Destination Network Generation via
Diffusion Model [24.582615553841396]
Origin-Destination(OD) networks provide an estimation of the flow of people from every region to others in the city.
We propose to generate the OD network, and design a graph denoising diffusion method to learn the conditional joint probability distribution of the nodes and edges.
arXiv Detail & Related papers (2023-06-08T02:02:55Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Graph Neural Network Reinforcement Learning for Autonomous
Mobility-on-Demand Systems [42.08603087208381]
We argue that the AMoD control problem is naturally cast as a node-wise decision-making problem.
We propose a deep reinforcement learning framework to control the rebalancing of AMoD systems through graph neural networks.
We show how the learned policies exhibit promising zero-shot transfer capabilities when faced with critical portability tasks.
arXiv Detail & Related papers (2021-04-23T06:42:38Z) - Deep Gravity: enhancing mobility flows generation with deep neural
networks and geographic information [1.479639149658596]
Existing solutions to flow generation are mainly based on mechanistic approaches.
We propose the MultiFeature Deep Gravity model as an effective solution to flow generation.
Our experiments, conducted on commuting flows in England, show that the MFDG model achieves a significant increase in the performance.
arXiv Detail & Related papers (2020-12-01T13:49:46Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
We propose a graph neural network based model that is able to perform multi-agent routing based on learned value in a sparsely connected graph.
We show that our model trained with only two agents on graphs with a maximum of 25 nodes can easily generalize to situations with more agents and/or nodes.
arXiv Detail & Related papers (2020-07-09T22:16:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.