論文の概要: Pricing options on flow forwards by neural networks in Hilbert space
- arxiv url: http://arxiv.org/abs/2202.11606v1
- Date: Thu, 17 Feb 2022 18:03:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-27 17:39:00.865077
- Title: Pricing options on flow forwards by neural networks in Hilbert space
- Title(参考訳): ヒルベルト空間におけるニューラルネットワークによる流れ前進の価格オプション
- Authors: Fred Espen Benth, Nils Detering, Luca Galimberti
- Abstract要約: 我々は、正の実数直線上の実値関数のヒルベルト空間において、価格問題を最適化問題として再考する。
この最適化問題は、新しいフィードフォワードニューラルネットワークアーキテクチャを容易にすることで解決される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new methodology for pricing options on flow forwards by applying
infinite-dimensional neural networks. We recast the pricing problem as an
optimization problem in a Hilbert space of real-valued function on the positive
real line, which is the state space for the term structure dynamics. This
optimization problem is solved by facilitating a novel feedforward neural
network architecture designed for approximating continuous functions on the
state space. The proposed neural net is built upon the basis of the Hilbert
space. We provide an extensive case study that shows excellent numerical
efficiency, with superior performance over that of a classical neural net
trained on sampling the term structure curves.
- Abstract(参考訳): 本稿では,無限次元ニューラルネットワークを応用したフローフォワードの価格設定手法を提案する。
我々は, 正実数直線上の実数値関数のヒルベルト空間において, 項構造ダイナミクスの状態空間であるヒルベルト空間において, 価格問題を最適化問題として再キャストする。
この最適化問題は、状態空間上の連続関数を近似するために設計された新しいフィードフォワードニューラルネットワークアーキテクチャを容易にすることで解決される。
提案したニューラルネットはヒルベルト空間に基づいて構築される。
本研究は, 用語構造曲線のサンプリングを訓練した古典的ニューラルネットよりも優れた数値効率を示す, 広範なケーススタディを提供する。
関連論文リスト
- A Subsampling Based Neural Network for Spatial Data [0.0]
本稿では、空間データに対する一貫した局所化された2層ディープニューラルネットワークに基づく回帰を提案する。
観測されたデータと予測されたデータの経験的確率分布の差分尺度の収束率を実験的に観察し、より滑らかな空間表面ではより高速になる。
この応用は非線形空間回帰の効果的な例である。
論文 参考訳(メタデータ) (2024-11-06T02:37:43Z) - Improving Generalization of Deep Neural Networks by Optimum Shifting [33.092571599896814]
本稿では,ニューラルネットワークのパラメータを最小値からフラット値に変化させる,近位シフトと呼ばれる新しい手法を提案する。
本手法は,ニューラルネットワークの入力と出力が固定された場合,ネットワーク内の行列乗算を,未決定線形方程式系として扱うことができることを示す。
論文 参考訳(メタデータ) (2024-05-23T02:31:55Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
ディープニューラルネットワーク(DNN)は通常、勾配降下による最適化に数千のイテレーションを要します。
非次最適化に基づく新しい多様体ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-15T06:39:13Z) - What Kinds of Functions do Deep Neural Networks Learn? Insights from
Variational Spline Theory [19.216784367141972]
本研究では,ReLUアクティベーション機能を用いた深層ニューラルネットワークが学習する関数の特性を理解するための変分フレームワークを開発する。
我々は、深層 relu ネットワークが、この関数空間における正規化データ適合問題の解であることを示す表現子定理を導出する。
論文 参考訳(メタデータ) (2021-05-07T16:18:22Z) - Quantum Optimization for Training Quantum Neural Networks [16.780058676633914]
量子最適化アルゴリズムを利用して、特定のタスクに最適なQNNのパラメータを見つけるためのフレームワークを考案する。
ネットワークパラメータのヒルベルト空間における重ね合わせ状態の相対位相にQNNのコスト関数をコヒーレントに符号化する。
論文 参考訳(メタデータ) (2021-03-31T13:06:30Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural
Networks: an Exact Characterization of the Optimal Solutions [51.60996023961886]
コーン制約のある凸最適化プログラムを解くことにより,グローバルな2層ReLUニューラルネットワークの探索が可能であることを示す。
我々の分析は新しく、全ての最適解を特徴づけ、最近、ニューラルネットワークのトレーニングを凸空間に持ち上げるために使われた双対性に基づく分析を活用できない。
論文 参考訳(メタデータ) (2020-06-10T15:38:30Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
ニューラルネットワークアーキテクチャの制約に基づく表現について検討する。
本稿では,いわゆるアーキテクチャ制約を満たすのに適した簡単な最適化手法について検討する。
論文 参考訳(メタデータ) (2020-02-18T16:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。