論文の概要: Nuclei panoptic segmentation and composition regression with multi-task
deep neural networks
- arxiv url: http://arxiv.org/abs/2202.11804v1
- Date: Wed, 23 Feb 2022 22:09:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-26 08:10:17.775290
- Title: Nuclei panoptic segmentation and composition regression with multi-task
deep neural networks
- Title(参考訳): マルチタスク深層ニューラルネットワークによる光核セグメンテーションと組成回帰
- Authors: Satoshi Kondo, Satoshi Kasai
- Abstract要約: 本報告では,Crocol Nuclei Identification and Counting (CoNIC) に提案した手法について述べる。
提案手法では, マルチタスク学習フレームワークを用いて, 単視分割タスクと回帰タスクを実行する。
パノプティカルセグメンテーションタスクでは、エンコーダ-デコーダ型ディープニューラルネットワークを用いて方向マップとセグメンテーションマップを予測し、近隣の核を異なるインスタンスに分割する。
- 参考スコア(独自算出の注目度): 0.12183405753834559
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Nuclear segmentation, classification and quantification within Haematoxylin &
Eosin stained histology images enables the extraction of interpretable
cell-based features that can be used in downstream explainable models in
computational pathology. The Colon Nuclei Identification and Counting (CoNIC)
Challenge is held to help drive forward research and innovation for automatic
nuclei recognition in computational pathology. This report describes our
proposed method submitted to the CoNIC challenge. Our method employs a
multi-task learning framework, which performs a panoptic segmentation task and
a regression task. For the panoptic segmentation task, we use encoder-decoder
type deep neural networks predicting a direction map in addition to a
segmentation map in order to separate neighboring nuclei into different
instances
- Abstract(参考訳): Haematoxylin & Eosin染色組織像中の核セグメンテーション、分類、定量化は、計算病理学において下流で説明可能なモデルで使用できる解釈可能な細胞ベースの特徴の抽出を可能にする。
Colon Nuclei Identification and Counting (CoNIC) Challengeが開催され、計算病理学における自動核認識の研究と革新を促進する。
本報告では,提案手法をCoNICチャレンジに提出した。
提案手法では,マルチタスク学習フレームワークを用いて,単視分割タスクと回帰タスクを実行する。
パノプティカルセグメンテーションタスクでは、エンコーダ-デコーダ型ディープニューラルネットワークを用いて、隣接する核を異なるインスタンスに分割するために、セグメンテーションマップに加えて方向マップを予測する。
関連論文リスト
- A Survey on Cell Nuclei Instance Segmentation and Classification: Leveraging Context and Attention [2.574831636177296]
我々は,H&E-stained microscopy imaging を用いて,細胞核のインスタンスのセグメンテーションと分類のコンテキストとアテンションに関する調査を行った。
本研究では,一般的な事例分割・分類手法(Mask-RCNN)と,コンテキスト・アテンションに基づく機構を用いたセル核の分類・分類モデル(HoVer-Net)を拡張した。
我々の研究結果は、ドメイン知識をアルゴリズム設計に翻訳することは簡単な作業ではなく、これらのメカニズムを完全に活用する必要があることを示唆している。
論文 参考訳(メタデータ) (2024-07-26T11:30:22Z) - AWGUNET: Attention-Aided Wavelet Guided U-Net for Nuclei Segmentation in Histopathology Images [26.333686941245197]
本稿では,U-NetアーキテクチャとDenseNet-121バックボーンを組み合わせたセグメンテーション手法を提案する。
本モデルでは,ウェーブレット誘導チャネルアテンションモジュールを導入し,セル境界のデライン化を促進させる。
その結果,Mouseg と TNBC の2つの病理組織学的データセットを用いて,提案モデルの優位性を実証した。
論文 参考訳(メタデータ) (2024-06-12T17:10:27Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
本研究は,2層以上の類似性ニューロンを組み込んだ多層神経回路網について述べる。
また,回避すべき画像領域に割り当てられる反プロトタイプ点の利用についても検討した。
論文 参考訳(メタデータ) (2023-08-28T12:55:13Z) - Structure Embedded Nucleus Classification for Histopathology Images [51.02953253067348]
ほとんどのニューラルネットワークに基づく手法は、局所的な畳み込みの受容領域に影響を受けている。
本稿では,核輪郭を順にサンプリングした点列に変換する新しい多角構造特徴学習機構を提案する。
次に、核をノードとするグラフ構造に組織像を変換し、その表現に核の空間分布を埋め込むグラフニューラルネットワークを構築する。
論文 参考訳(メタデータ) (2023-02-22T14:52:06Z) - CoNIC: Colon Nuclei Identification and Counting Challenge 2022 [5.23834975053771]
大腸核の同定とカウント(CoNIC)の課題を整理する。
研究者は、核のセグメンテーション、分類、カウントを行うアルゴリズムを開発することを奨励する。
この課題の一環として、各入力アルゴリズムの感度を特定の入力変動に対してテストする。
論文 参考訳(メタデータ) (2021-11-29T12:06:47Z) - PointNu-Net: Keypoint-assisted Convolutional Neural Network for
Simultaneous Multi-tissue Histology Nuclei Segmentation and Classification [23.466331358975044]
ヘマトキシリンおよびエオシン染色組織学データから核を同時に検出し,分画し,分類する新しい手法を考案し,その設計を行った。
本研究は,19種類の組織にまたがる核分割と分類のための提案手法の優れた性能を実証する。
論文 参考訳(メタデータ) (2021-11-01T08:29:40Z) - Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei
Segmentation in Histopathology Images [65.47507533905188]
重なり合う核を正確に分離するために、曲げ損失正規化器を備えた新しいマルチタスク学習ネットワークを提案する。
新たに提案されたマルチタスク学習アーキテクチャは、3つのタスクから共有表現を学習することで一般化を促進する。
提案した曲げ損失は,輪郭点を大きな曲率で囲むために高いペナルティを定義し,小さな曲率で凸輪郭点に小さなペナルティを適用した。
論文 参考訳(メタデータ) (2021-09-30T17:29:44Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Instance-aware Self-supervised Learning for Nuclei Segmentation [47.07869311690419]
本稿では,核インスタンス分割タスクにおける畳み込みニューラルネットワーク(CNN)の能力を活用するための,新たな自己教師型学習フレームワークを提案する。
提案するアプローチには、2つのサブタスクが含まれており、ニューラルネットワークは、核の大きさと量の事前知識を暗黙的に活用することができる。
公開されているMoNuSegデータセットの実験結果から、提案した自己教師付き学習手法は、核インスタンスのセグメンテーション精度を著しく向上させることができることが示された。
論文 参考訳(メタデータ) (2020-07-22T03:37:14Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
本稿では,部分点アノテーションに基づく弱教師付きセグメンテーションフレームワークを提案する。
本手法は, 完全教師付き手法や最先端手法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-07-10T15:41:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。