論文の概要: XAutoML: A Visual Analytics Tool for Understanding and Validating
Automated Machine Learning
- arxiv url: http://arxiv.org/abs/2202.11954v3
- Date: Fri, 24 Nov 2023 17:12:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 05:20:04.270507
- Title: XAutoML: A Visual Analytics Tool for Understanding and Validating
Automated Machine Learning
- Title(参考訳): XAutoML - 自動機械学習を理解し検証するためのビジュアル分析ツール
- Authors: Marc-Andr\'e Z\"oller, Waldemar Titov, Thomas Schlegel, Marco F. Huber
- Abstract要約: XAutoMLは、AutoMLによって構築された任意のAutoML最適化手順とMLパイプラインを説明するための、インタラクティブなビジュアル分析ツールである。
XAutoMLは、インタラクティブな視覚化と、説明可能な人工知能(XAI)の確立したテクニックを組み合わせることで、完全なAutoML手順を透過的かつ説明可能なものにする。
- 参考スコア(独自算出の注目度): 5.633209323925663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the last ten years, various automated machine learning (AutoM ) systems
have been proposed to build end-to-end machine learning (ML) pipelines with
minimal human interaction. Even though such automatically synthesized ML
pipelines are able to achieve a competitive performance, recent studies have
shown that users do not trust models constructed by AutoML due to missing
transparency of AutoML systems and missing explanations for the constructed ML
pipelines. In a requirements analysis study with 36 domain experts, data
scientists, and AutoML researchers from different professions with vastly
different expertise in ML, we collect detailed informational needs for AutoML.
We propose XAutoML, an interactive visual analytics tool for explaining
arbitrary AutoML optimization procedures and ML pipelines constructed by
AutoML. XAutoML combines interactive visualizations with established techniques
from explainable artificial intelligence (XAI) to make the complete AutoML
procedure transparent and explainable. By integrating XAutoML with JupyterLab,
experienced users can extend the visual analytics with ad-hoc visualizations
based on information extracted from XAutoML. We validate our approach in a user
study with the same diverse user group from the requirements analysis. All
participants were able to extract useful information from XAutoML, leading to a
significantly increased understanding of ML pipelines produced by AutoML and
the AutoML optimization itself.
- Abstract(参考訳): 過去10年間で、ヒューマンインタラクションを最小限に抑えたエンドツーエンド機械学習(ML)パイプラインを構築するために、さまざまな自動機械学習(AutoM)システムが提案されている。
このような自動合成MLパイプラインは、競争力のあるパフォーマンスを達成することができるが、最近の研究では、AutoMLシステムの透明性の欠如と、構築されたMLパイプラインの説明の欠如により、AutoMLで構築されたモデルを信頼していないことが示されている。
MLの専門知識が異なる専門職の36のドメインエキスパート、データサイエンティスト、AutoML研究者による要件分析調査で、AutoMLの詳細な情報ニーズを収集した。
我々は、任意のAutoML最適化手順とAutoMLで構築されたMLパイプラインを説明するインタラクティブなビジュアル分析ツールであるXAutoMLを提案する。
XAutoMLは、インタラクティブな視覚化と、説明可能な人工知能(XAI)の確立したテクニックを組み合わせて、完全なAutoML手順を透過的で説明可能なものにする。
XAutoMLとJupyterLabを統合することで、経験豊富なユーザは、XAutoMLから抽出した情報に基づいて、アドホックな視覚化による視覚分析を拡張することができる。
要件分析から,同じ多様なユーザグループを用いたユーザスタディにおけるアプローチを検証する。
すべての参加者がXAutoMLから有用な情報を抽出することができ、AutoMLとAutoML最適化自体によって生成されたMLパイプラインの理解が大幅に向上した。
関連論文リスト
- UniAutoML: A Human-Centered Framework for Unified Discriminative and Generative AutoML with Large Language Models [5.725785427377439]
我々は、人間中心のAutoMLフレームワークであるUniAutoMLを紹介し、AutoMLを識別的タスクと生成的タスクの両方に統一する。
UniAutoMLの人間中心の設計は、自然言語の対話を容易にする対話型ユーザインタフェース(CUI)を革新的に特徴付けている。
この設計により、AutoMLトレーニングプロセス全体の透明性とユーザコントロールが向上し、ユーザがトレーニング対象のモデルをシームレスに分解あるいは修正できるようになる。
論文 参考訳(メタデータ) (2024-10-09T17:33:15Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
言語化機械学習(VML)の枠組みを紹介する。
VMLはパラメータ空間を人間の解釈可能な自然言語に制限する。
我々は,VMLの有効性を実証的に検証し,VMLがより強力な解釈可能性を実現するためのステップストーンとして機能することを期待する。
論文 参考訳(メタデータ) (2024-06-06T17:59:56Z) - Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
自動機械学習(AutoML)は、機械学習(ML)を自動かつ効率的に構成する基本的目的を中心に形成された。
AutoMLの完全な可能性を解き放つ鍵は、現在探索されていないAutoMLシステムとのユーザインタラクションの側面に対処することにある、と私たちは主張する。
論文 参考訳(メタデータ) (2024-06-05T15:05:24Z) - AutoMMLab: Automatically Generating Deployable Models from Language
Instructions for Computer Vision Tasks [39.71649832548044]
AutoMMLabは、ユーザの言語命令に従う汎用LLMベースのAutoMLシステムである。
提案する AutoMMLab システムは,AutoML と OpenMMLab コミュニティを結ぶブリッジとして LLM を効果的に利用している。
実験の結果、AutoMMLabシステムは汎用的で、さまざまなメインストリームタスクをカバーしています。
論文 参考訳(メタデータ) (2024-02-23T14:38:19Z) - Assessing the Use of AutoML for Data-Driven Software Engineering [10.40771687966477]
AutoMLは、エンドツーエンドのAI/MLパイプラインの構築を自動化することを約束する。
関心の高まりと高い期待にもかかわらず、AutoMLが現在採用されている範囲に関する情報が不足している。
論文 参考訳(メタデータ) (2023-07-20T11:14:24Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - Towards Green Automated Machine Learning: Status Quo and Future
Directions [71.86820260846369]
AutoMLは高いリソース消費で批判されている。
本稿では,AutoMLプロセス全体を環境に優しいものにするためのパラダイムであるGreen AutoMLを提案する。
論文 参考訳(メタデータ) (2021-11-10T18:57:27Z) - Automatic Componentwise Boosting: An Interpretable AutoML System [1.1709030738577393]
本稿では,高度にスケーラブルなコンポーネントワイドブースティングアルゴリズムを用いて適用可能な,解釈可能な付加モデルを構築するAutoMLシステムを提案する。
我々のシステムは、部分的な効果やペアの相互作用を可視化するなど、簡単なモデル解釈のためのツールを提供する。
解釈可能なモデル空間に制限があるにもかかわらず、我々のシステムは、ほとんどのデータセットにおける予測性能の点で競争力がある。
論文 参考訳(メタデータ) (2021-09-12T18:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。