An optimal scheduled learning rate for a randomized Kaczmarz algorithm
- URL: http://arxiv.org/abs/2202.12224v1
- Date: Thu, 24 Feb 2022 17:38:24 GMT
- Title: An optimal scheduled learning rate for a randomized Kaczmarz algorithm
- Authors: Nicholas F. Marshall, Oscar Mickelin
- Abstract summary: We study how the learning rate affects the performance of a relaxed randomized Kaczmarz algorithm for solving $A x approx b + varepsilon$.
- Score: 1.2183405753834562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study how the learning rate affects the performance of a relaxed
randomized Kaczmarz algorithm for solving $A x \approx b + \varepsilon$, where
$A x =b$ is a consistent linear system and $\varepsilon$ has independent mean
zero random entries. We derive a scheduled learning rate which optimizes a
bound on the expected error that is sharp in certain cases; in contrast to the
exponential convergence of the standard randomized Kaczmarz algorithm, our
optimized bound involves the reciprocal of the Lambert-$W$ function of an
exponential.
Related papers
- Fully Zeroth-Order Bilevel Programming via Gaussian Smoothing [7.143879014059895]
We study and analyze zeroth-order approximation algorithms for solving bilvel problems.
To the best of our knowledge, this is the first time that sample bounds are established for a fully zeroth-order bilevel optimization algorithm.
arXiv Detail & Related papers (2024-03-29T21:12:25Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Gradient-free optimization of highly smooth functions: improved analysis
and a new algorithm [87.22224691317766]
This work studies problems with zero-order noisy oracle information under the assumption that the objective function is highly smooth.
We consider two kinds of zero-order projected gradient descent algorithms.
arXiv Detail & Related papers (2023-06-03T17:05:13Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
We show that randomization is necessary to obtain a dimension-free dimension-free algorithm.
Our algorithm yields the first deterministic dimension-free algorithm for optimizing ReLU networks.
arXiv Detail & Related papers (2023-02-16T13:57:19Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - A Near-Optimal Algorithm for Univariate Zeroth-Order Budget Convex
Optimization [4.608510640547952]
We prove near-optimal optimization error guarantees for Dy Search.
We show that the classical dependence on the global Lipschitz constant in the error bounds is an artifact of the granularity of the budget.
arXiv Detail & Related papers (2022-08-13T19:57:04Z) - A stochastic linearized proximal method of multipliers for convex
stochastic optimization with expectation constraints [8.133190610747974]
We present a computable approximation type algorithm, namely the linearized proximal convex method of multipliers.
Some preliminary numerical results demonstrate the performance of the proposed algorithm.
arXiv Detail & Related papers (2021-06-22T07:24:17Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
We propose a model-free reinforcement learning algorithm inspired by the popular randomized least squares value iteration (RLSVI) algorithm.
Our algorithm drives exploration by simply perturbing the training data with judiciously chosen i.i.d. scalar noises.
We complement the theory with an empirical evaluation across known difficult exploration tasks.
arXiv Detail & Related papers (2021-06-15T02:23:07Z) - Simultaenous Sieves: A Deterministic Streaming Algorithm for
Non-Monotone Submodular Maximization [16.346069386394703]
We present a deterministic, single-pass streaming algorithm for the problem of maximizing a submodular function, not necessarily a monotone, with respect to a cardinality constraint.
For a monotone, single-pass streaming algorithm, our algorithm achieves in time an improvement of the best approximation factor from $1/9$ of previous literature to $approx 0.2689$.
arXiv Detail & Related papers (2020-10-27T15:22:49Z) - Learning Infinite-horizon Average-reward MDPs with Linear Function
Approximation [44.374427255708135]
We develop new algorithms for learning Markov Decision Processes in an infinite-horizon average-reward setting with linear function approximation.
Using the optimism principle and assuming that the MDP has a linear structure, we first propose a computationally inefficient algorithm with optimal $widetildeO(sqrtT)$ regret.
Next, taking inspiration from adversarial linear bandits, we develop yet another efficient algorithm with $widetildeO(sqrtT)$ regret.
arXiv Detail & Related papers (2020-07-23T08:23:44Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.