論文の概要: Implicit Optimizer for Diffeomorphic Image Registration
- arxiv url: http://arxiv.org/abs/2202.12498v1
- Date: Fri, 25 Feb 2022 05:04:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-28 14:57:58.604104
- Title: Implicit Optimizer for Diffeomorphic Image Registration
- Title(参考訳): Diffomorphic Image Registrationのためのインプシット最適化
- Authors: Kun Han, Shanlin Sun
- Abstract要約: 本稿では,Diffomorphic Image Registration (IDIR) の高速かつ正確なインプシットを提案する。
提案手法を2つの大規模MR脳スキャンデータセットで評価し,提案手法が従来の画像登録手法よりも高速かつ優れた登録結果を提供することを示した。
- 参考スコア(独自算出の注目度): 3.1970342304563037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffeomorphic image registration is the underlying technology in medical
image processing which enables the invertibility and point-to-point
correspondence. Recently, numerous learning-based methods utilizing
convolutional neural networks (CNNs) have been proposed for registration
problems. Compared with the speed boosting, accuracy improvement brought by the
complicated CNN-based methods is minor. To tackle this problem, we propose a
rapid and accurate Implicit Optimizer for Diffeomorphic Image Registration
(IDIR) which utilizes the Deep Implicit Function as the neural velocity field
(NVF) whose input is the point coordinate p and output is velocity vector at
that point v. To reduce the huge memory consumption brought by NVF for 3D
volumes, a sparse sampling is employed to the framework. We evaluate our method
on two 3D large-scale MR brain scan datasets, the results show that our
proposed method provides faster and better registration results than
conventional image registration approaches and outperforms the learning-based
methods by a significant margin while maintaining the desired diffeomorphic
properties.
- Abstract(参考訳): diffeomorphic image registrationは、可逆性とポイントツーポイント対応を可能にする医療画像処理の基礎技術である。
近年,畳み込みニューラルネットワーク(cnns)を用いた登録問題に対する学習ベースの手法が数多く提案されている。
高速化と比較して、複雑なCNNベースの手法による精度の向上は小さい。
この問題に対処するため,Diffomorphic Image Registration (IDIR) のための高速かつ正確なインプリシット最適化手法を提案し,入力が点座標 p でありその点 v における出力が速度ベクトルであるニューラル速度場 (NVF) としてDeep Implicit Function を利用する。
提案手法は,従来の画像登録手法よりも高速かつ優れた登録結果を提供し,所望の微分型特性を維持しつつ,学習に基づく手法を著しく向上することを示す。
関連論文リスト
- LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
最近のディープニューラルネットワーク(DNN)は、学習データ前処理を導入することで、パフォーマンスを著しく向上させた。
本稿では,DNNが学習した構造的前提と局所的連続仮定の両方を活かした学習再サンプリング(Learning Resampling, LeRF)を提案する。
LeRFは空間的に異なる再サンプリング関数を入力画像ピクセルに割り当て、ニューラルネットワークを用いてこれらの再サンプリング関数の形状を予測する。
論文 参考訳(メタデータ) (2024-07-13T16:09:45Z) - OrientDream: Streamlining Text-to-3D Generation with Explicit Orientation Control [66.03885917320189]
OrientDreamは、テキストプロンプトから効率よくマルチビューで一貫した3D生成のためのカメラ指向条件付きフレームワークである。
本戦略は,2次元テキスト・画像拡散モジュールの事前学習におけるカメラ配向条件付き機能の実装を強調する。
提案手法は,一貫したマルチビュー特性を持つ高品質なNeRFモデルを生成するだけでなく,既存手法よりも最適化速度が大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-06-14T13:16:18Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Fast-SNARF: A Fast Deformer for Articulated Neural Fields [92.68788512596254]
本稿では,標準空間とポーズ空間の正確な対応性を求める,ニューラルフィールドのための新しい調音モジュールFast-SNARFを提案する。
Fast-SNARFはこれまでの研究であるSNARFの代替であり、計算効率は大幅に向上した。
変形マップの学習は多くの3次元人間のアバター法において重要な要素であるため、この研究は3次元仮想人間の実現に向けた重要なステップであると考えている。
論文 参考訳(メタデータ) (2022-11-28T17:55:34Z) - Non-iterative Coarse-to-fine Registration based on Single-pass Deep
Cumulative Learning [11.795108660250843]
変形可能な画像登録のための非Iterative Coarse-to-finE登録ネットワーク(NICE-Net)を提案する。
NICE-Netは、非イテレーティブメソッドと同じようなランタイムしか必要とせず、最先端の反復的な深層登録手法より優れている。
論文 参考訳(メタデータ) (2022-06-25T08:34:59Z) - Medical Image Registration via Neural Fields [35.80302878742334]
NIR(Neural Image Registration)と呼ばれる新しいニューラルネットベースの画像登録フレームワークを提案する。
2つの3D MR脳スキャンデータセットの実験により、NIRは登録精度と正規性の両方の観点から最先端のパフォーマンスを得る一方で、従来の最適化ベースの手法よりもはるかに高速に動作していることが示された。
論文 参考訳(メタデータ) (2022-06-07T08:43:31Z) - Affine Medical Image Registration with Coarse-to-Fine Vision Transformer [11.4219428942199]
本稿では,3次元医用画像登録のための学習ベースアルゴリズムであるCoarse-to-Fine Vision Transformer (C2FViT)を提案する。
本手法は, 登録精度, 堅牢性, 一般化性の観点から, 既存のCNNベースのアフィン登録法よりも優れている。
論文 参考訳(メタデータ) (2022-03-29T03:18:43Z) - Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration [63.15453821022452]
ディープラーニングに基づくアプローチの最近の発展は、DiffIRのサブ秒間実行を実現している。
本稿では,中間定常速度場を機能的に構成する簡易な反復スキームを提案する。
次に、任意の順序の正規化項を用いて、これらの速度場に滑らかさを課す凸最適化モデルを提案する。
論文 参考訳(メタデータ) (2021-09-26T19:56:45Z) - Deformable Image Registration using Neural ODEs [15.245085400790002]
ニューラル常微分方程式(NODE)を利用した汎用的で高速かつ高精度な微分型画像登録フレームワークを提案する。
従来の最適化手法と比較して、我々のフレームワークは実行時間を数十分から数十秒に短縮する。
実験の結果, 提案手法の登録結果は, 各種測定値において, 最先端技術よりも優れていた。
論文 参考訳(メタデータ) (2021-08-07T12:54:17Z) - Multi-scale Neural ODEs for 3D Medical Image Registration [7.715565365558909]
医用画像解析において画像登録は重要な役割を担っている。
ラーニング・トゥ・マップのような深層学習手法はより高速であるが、大きな動きを扱うための精度を改善するために反復的あるいは粗大なアプローチが必要である。
本研究では,マルチスケールのニューラルODEモデルを用いて登録を学習することを提案する。
論文 参考訳(メタデータ) (2021-06-16T00:26:53Z) - Learning a Model-Driven Variational Network for Deformable Image
Registration [89.9830129923847]
VR-Netは、教師なしの変形可能な画像登録のための新しいカスケード可変ネットワークである。
登録精度において最先端のディープラーニング手法よりも優れています。
ディープラーニングの高速推論速度と変分モデルのデータ効率を維持している。
論文 参考訳(メタデータ) (2021-05-25T21:37:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。