論文の概要: Deep Dirichlet uncertainty for unsupervised out-of-distribution
detection of eye fundus photographs in glaucoma screening
- arxiv url: http://arxiv.org/abs/2202.12634v1
- Date: Fri, 25 Feb 2022 11:51:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-28 14:35:54.544308
- Title: Deep Dirichlet uncertainty for unsupervised out-of-distribution
detection of eye fundus photographs in glaucoma screening
- Title(参考訳): 緑内障検診における眼底画像の教師なし分布検出のためのディープディリクレ不確実性
- Authors: Teresa Ara\'ujo, Guilherme Aresta and Hrvoje Bogunovic
- Abstract要約: 現在の最先端のソリューションは現実世界のシナリオに対して堅牢ではなく、アウト・オブ・ディストリビューションのケースに対する過度な予測を提供する。
そこで本稿では,ディリクレ分布に基づくモデルを提案する。
- 参考スコア(独自算出の注目度): 3.362913090309607
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The development of automatic tools for early glaucoma diagnosis with color
fundus photographs can significantly reduce the impact of this disease.
However, current state-of-the-art solutions are not robust to real-world
scenarios, providing over-confident predictions for out-of-distribution cases.
With this in mind, we propose a model based on the Dirichlet distribution that
allows to obtain class-wise probabilities together with an uncertainty
estimation without exposure to out-of-distribution cases. We demonstrate our
approach on the AIROGS challenge. At the start of the final test phase (8 Feb.
2022), our method had the highest average score among all submissions.
- Abstract(参考訳): カラー眼底写真を用いた早期緑内障診断のための自動ツールの開発は、この疾患の影響を著しく減少させる可能性がある。
しかし、現在の最先端のソリューションは現実のシナリオに対して堅牢ではない。
そこで本研究では,ディリクレ分布(dirichlet distribution)に基づくモデルを提案する。
AIROGSの課題に対する我々のアプローチを実証する。
最終試験段階(2022年2月8日)の開始時点では,提案手法が最も高いスコアを示した。
関連論文リスト
- Rescuing referral failures during automated diagnosis of domain-shifted
medical images [17.349847762608086]
異なる人口層から取得した医療画像や、別の技術を用いて測定した場合、最先端の領域一般化アプローチでさえ、参照中に深刻な失敗を犯すことが示される。
我々は,これらの障害を解消し,大幅な性能向上を実現する,ロバストな一般化とポストホック参照アプローチの新たな組み合わせを評価する。
論文 参考訳(メタデータ) (2023-11-28T13:14:55Z) - RADNet: Ensemble Model for Robust Glaucoma Classification in Color
Fundus Images [0.0]
緑内障は最も重篤な眼疾患の1つで、急激な進行と不可逆性失明を特徴とする。
集団の正常な緑内障検診では早期発見が改善するが,病原性チェックアップの望ましい頻度は期待できないことが多い。
本研究では,高度な画像前処理手法と深層分類ネットワークのアンサンブルを併用した画像前処理手法を提案する。
論文 参考訳(メタデータ) (2022-05-25T16:48:00Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Joint Dermatological Lesion Classification and Confidence Modeling with
Uncertainty Estimation [23.817227116949958]
本稿では,皮膚学的な分類と不確実性評価を共同で検討する枠組みを提案する。
信頼ネットワークから不確実な特徴や望ましくない変化を避けるために,各特徴の信頼度を推定する。
提案手法の可能性を2つの最先端の皮膚内視鏡的データセットに示す。
論文 参考訳(メタデータ) (2021-07-19T11:54:37Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Uncertainty aware and explainable diagnosis of retinal disease [0.0]
4つの網膜疾患の診断のための深層学習モデルの不確実性解析を行う。
不確実性が認識されている間にシステムが予測に使用する特徴は、システムが決定について確信が持たないときにハイライトする能力である。
論文 参考訳(メタデータ) (2021-01-26T23:37:30Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z) - Manifolds for Unsupervised Visual Anomaly Detection [79.22051549519989]
トレーニングで必ずしも異常に遭遇しない教師なしの学習方法は、非常に有用です。
ジャイロプレーン層を用いた立体投影による超球形変分オートエンコーダ(VAE)を開発した。
工業用AIシナリオにおける実世界の実用性を実証し、精密製造および検査における視覚異常ベンチマークの最先端結果を示す。
論文 参考訳(メタデータ) (2020-06-19T20:41:58Z) - Unsupervised Lesion Detection via Image Restoration with a Normative
Prior [6.495883501989547]
本稿では,ネットワークをベースとした事前分布を規範分布とし,MAP推定を用いて画素単位で病変を検出する確率モデルを提案する。
脳MRIにおけるグリオーマと脳卒中病変の実験は、提案手法が最先端の教師なし手法よりかなり優れていることを示している。
論文 参考訳(メタデータ) (2020-04-30T18:03:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。