論文の概要: RADNet: Ensemble Model for Robust Glaucoma Classification in Color
Fundus Images
- arxiv url: http://arxiv.org/abs/2205.12902v1
- Date: Wed, 25 May 2022 16:48:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-26 12:30:15.236505
- Title: RADNet: Ensemble Model for Robust Glaucoma Classification in Color
Fundus Images
- Title(参考訳): RADNet:カラーファンドス画像におけるロバスト緑内障分類のためのアンサンブルモデル
- Authors: Dmitrii Medvedev, Rand Muhtaseb, Ahmed Al Mahrooqi
- Abstract要約: 緑内障は最も重篤な眼疾患の1つで、急激な進行と不可逆性失明を特徴とする。
集団の正常な緑内障検診では早期発見が改善するが,病原性チェックアップの望ましい頻度は期待できないことが多い。
本研究では,高度な画像前処理手法と深層分類ネットワークのアンサンブルを併用した画像前処理手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Glaucoma is one of the most severe eye diseases, characterized by rapid
progression and leading to irreversible blindness. It is often the case that
pathology diagnostics is carried out when the one's sight has already
significantly degraded due to the lack of noticeable symptoms at early stage of
the disease. Regular glaucoma screenings of the population shall improve
early-stage detection, however the desirable frequency of etymological checkups
is often not feasible due to excessive load imposed by manual diagnostics on
limited number of specialists. Considering the basic methodology to detect
glaucoma is to analyze fundus images for the \textit{optic-disc-to-optic-cup
ratio}, Machine Learning domain can offer sophisticated tooling for image
processing and classification. In our work, we propose an advanced image
pre-processing technique combined with an ensemble of deep classification
networks. Our \textit{Retinal Auto Detection (RADNet)} model has been
successfully tested on Rotterdam EyePACS AIROGS train dataset with AUC of 0.92,
and then additionally finetuned and tested on a fraction of RIM-ONE DL dataset
with AUC of 0.91.
- Abstract(参考訳): 緑内障は最も重篤な眼疾患の1つで、急激な進行と不可逆性失明を特徴とする。
疾患の早期に明らかな症状の欠如により、すでに視力が著しく低下している場合には、病理診断が行われることが多い。
人口の正常な緑内障検診は早期発見を改善させるが, 限られた数の専門医に手動診断を施した過度な負荷により, 語源検査の望ましい頻度は期待できないことが多い。
緑内障を検知する基本的な手法として,「textit{optic-disc-to-cup ratio}」の眼底画像を分析することを考えると,機械学習領域は画像処理と分類のための高度なツールを提供することができる。
本研究では,深層分類ネットワークのアンサンブルを組み合わせた高度な画像前処理手法を提案する。
我々の RADNet モデルは、ロッテルダムEyePACS AIROGS の列車用データセットで0.92の精度でテストされ、さらに、RIM-ONE DL の少数のデータセットで0.91の精度でテストされた。
関連論文リスト
- Graph-Guided Test-Time Adaptation for Glaucoma Diagnosis using Fundus Photography [36.328434151676525]
緑内障は世界中で不可逆的な盲目の原因となっている。
眼底画像を用いた深層学習は緑内障の早期診断を大幅に改善した。
異なるデバイスや場所(ドメインシフトとして知られる)からのイメージの変化は、実世界の設定で事前トレーニングされたモデルを使用することに挑戦する。
緑内障の診断モデルを未知のテスト環境に一般化するためのグラフ誘導テスト時間適応フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-05T10:06:55Z) - Harnessing the power of longitudinal medical imaging for eye disease prognosis using Transformer-based sequence modeling [49.52787013516891]
今回提案した Longitudinal Transformer for Survival Analysis (LTSA, Longitudinal Transformer for Survival Analysis, LTSA) は, 縦断的医用画像から動的疾患の予後を予測できる。
時間的注意分析により、最新の画像は典型的には最も影響力のあるものであるが、以前の画像は追加の予後に価値があることが示唆された。
論文 参考訳(メタデータ) (2024-05-14T17:15:28Z) - InceptionCaps: A Performant Glaucoma Classification Model for
Data-scarce Environment [0.0]
緑内障は不可逆的な眼疾患で 世界第2位の視覚障害の原因です
本稿では,InceptionV3を畳み込みベースとしたカプセルネットワーク(CapsNet)をベースとした新しいディープラーニングモデルであるInceptionCapsを提案する。
InceptionCapsは0.956、特異性0.96、AUC0.9556を達成し、RIM-ONE v2データセット上での最先端のディープラーニングモデルのパフォーマンスを上回った。
論文 参考訳(メタデータ) (2023-11-24T11:58:11Z) - Automatic detection of glaucoma via fundus imaging and artificial
intelligence: A review [0.4215938932388722]
緑内障は世界中で不可逆的な視覚障害の原因となっている。
ファンダスイメージングは非侵襲的で低コストである。
人工知能は、光学カップとディスクの境界を自動的に見つけることができる。
論文 参考訳(メタデータ) (2022-04-12T07:47:13Z) - GAMMA Challenge:Glaucoma grAding from Multi-Modality imAges [48.98620387924817]
グラウコーマgAding from Multi-Modality imAges (GAMMA) Challenge を作成した。
この課題の主な課題は,2次元眼底画像と3D OCTスキャンボリュームから緑内障を診断することである。
緑内障のカラー写真と3D OCTボリュームを併用した緑内障アノテートデータセットを公表した。
論文 参考訳(メタデータ) (2022-02-14T06:54:15Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Circumpapillary OCT-Focused Hybrid Learning for Glaucoma Grading Using
Tailored Prototypical Neural Networks [1.1601676598120785]
緑内障は世界の視覚障害の主要な原因の1つである。
生の毛細血管Bスキャンを用いて緑内障を診断する新しい枠組みを初めて提案する。
特に,手動学習と深層学習を組み合わせた新しいOCTベースのハイブリッドネットワークを構築した。
論文 参考訳(メタデータ) (2021-06-25T10:53:01Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。