Emergent quantum correlations and collective behavior in non-interacting
quantum systems subject to stochastic resetting
- URL: http://arxiv.org/abs/2202.12655v1
- Date: Fri, 25 Feb 2022 12:22:19 GMT
- Title: Emergent quantum correlations and collective behavior in non-interacting
quantum systems subject to stochastic resetting
- Authors: Matteo Magoni, Federico Carollo, Gabriele Perfetto, Igor Lesanovsky
- Abstract summary: We investigate the dynamics of a non-interacting spin system undergoing coherent oscillations in the presence of Rabi resetting.
We show that resetting generally induces long-range quantum and classical correlations.
In the thermodynamic limit, the spin system can feature collective behavior.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the dynamics of a non-interacting spin system, undergoing
coherent Rabi oscillations, in the presence of stochastic resetting. We show
that resetting generally induces long-range quantum and classical correlations
both in the emergent dissipative dynamics and in the non-equilibrium stationary
state. Moreover, for the case of conditional reset protocols -- where the
system is reinitialized to a state dependent on the outcome of a preceding
measurement -- we show that, in the thermodynamic limit, the spin system can
feature collective behavior which results in a phenomenology reminiscent of
that occurring in non-equilibrium phase transitions. The discussed reset
protocols can be implemented on quantum simulators and quantum devices that
permit fast measurement and readout of macroscopic observables, such as the
magnetisation. Our approach does not require the control of coherent
interactions and may therefore highlight a route towards a simple and robust
creation of quantum correlations and collective non-equilibrium states, with
potential applications in quantum enhanced metrology and sensing.
Related papers
- Stochastic resetting in discrete-time quantum dynamics: steady states and correlations in few-qubit systems [0.0]
We investigate the steady-state properties of discrete-time reset dynamics on quantum computers.
For Poissonian resets, we compute the stationary state of the process and demonstrate the existence of "resonances" in the quantum gates.
We show that, when the reset probability vanishes sufficiently rapidly with time, the system does not approach a steady state.
arXiv Detail & Related papers (2024-10-15T11:07:25Z) - Exploiting nonequilibrium phase transitions and strong symmetries for continuous measurement of collective observables [0.0]
We discuss how a strong symmetry in conjunction with a nonequilibrium phase transition allows to devise a protocol for measuring collective many-body observables.
We show that by continuously monitoring the system output the value of the total angular momentum can be inferred directly from the time-integrated emission signal.
arXiv Detail & Related papers (2024-07-18T09:51:31Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum fluctuations and correlations in open quantum Dicke models [0.0]
In the vicinity of ground-state phase transitions quantum correlations can display non-analytic behavior and critical scaling.
Here we consider as a paradigmatic setting the superradiant phase transition of the open quantum Dicke model.
We show that local dissipation, which cannot be treated within the commonly employed Holstein-Primakoff approximation, rather unexpectedly leads to an enhancement of collective quantum correlations.
arXiv Detail & Related papers (2021-10-25T18:15:05Z) - Unpredictability and entanglement in open quantum systems [0.0]
We show that unpredictability and quantum entanglement can coexist even in the long time limit.
We show that the required many-body interactions for the cellular automaton embedding can be efficiently realized within a variational quantum simulator platform.
arXiv Detail & Related papers (2021-06-14T18:00:12Z) - From Non-Hermitian Linear Response to Dynamical Correlations and
Fluctuation-Dissipation Relations in Quantum Many-Body Systems [0.0]
We propose a technique for measuring unequal-time anti-commutators using the linear response of a system to a non-Hermitian perturbation.
We relate the scheme to the quantum Zeno effect and weak measurements, and illustrate possible implementations.
arXiv Detail & Related papers (2021-04-08T18:00:06Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.