Light-induced Pairing Instability of Ultrafast Electron Beams with Space Charge Interactions
- URL: http://arxiv.org/abs/2507.00869v1
- Date: Tue, 01 Jul 2025 15:32:39 GMT
- Title: Light-induced Pairing Instability of Ultrafast Electron Beams with Space Charge Interactions
- Authors: Hao Geng, Qiaofei Pan, Jian Kang, Yiming Pan,
- Abstract summary: We introduce a photon-induced pairing mechanism that generates a net attractive force between two electrons.<n>We demonstrate that the effective interaction via single-photon exchange among PINEM electrons can suppress the inherent repulsive Coulomb interaction.<n>We also analyze the dynamics of the free-electron pairs in a bunched beam, underscoring the potential to facilitate a phase-coherent condensate of electrons.
- Score: 4.9151602445945555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultrafast electron beams are essential for many applications, yet space-charge interactions in high-intensity beams lead to energy dissipation, coherence loss, and pulse broadening. Existing techniques mitigate these effects by using low-flux beams, preserving beam coherence into the quantum regime. Here, we propose a novel approach by treating the electrons as a strongly correlated Fermi gas rather than merely as an ensemble of charged point-like particles. We introduce a photon-induced pairing mechanism that generates a net attractive force between two electrons, thereby forming "flying bound states" analogous to Cooper pairs of conduction electrons in superconductors. Employing the setting of photon-induced near-field electron microscopy (PINEM), we demonstrate that the effective interaction via single-photon exchange among PINEM electrons can suppress the inherent repulsive Coulomb interaction, enabling a pairing instability mediated by structured electromagnetic fields at near-resonant velocity matching regimes. Finally, we analyze the dynamics of the free-electron pairs in a bunched beam, underscoring the potential to facilitate a phase-coherent condensate of electrons, which can further enhance beam coherence and multi-particle correlation for high-intensity electrons.
Related papers
- Indirect multiphoton scattering between light and bulk plasmons via ultrafast free electrons [5.303354089191869]
We show that ultrafast free electrons can coherently mediate an interaction between electromagnetic fields and BPs at the nanoscale.<n>Results show that femtosecond-driven, ultrafast electrons provide a viable route to modulate and even control bulk plasmon excitations in a volume.
arXiv Detail & Related papers (2025-07-24T04:59:12Z) - A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)<n>The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.<n>We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Free-Space Optical Modulation of Free Electrons in the Continuous-Wave Regime [0.0]
coherent interaction between free electrons and optical fields can produce free-electron compression.<n>We introduce a practical scheme to achieve a large temporal compression of continuous electron beams without involving optical scattering by material structures.
arXiv Detail & Related papers (2024-12-04T15:49:03Z) - Tailoring coherent charge transport in graphene by deterministic defect generation [36.136619420474766]
We introduce lattice defects in graphene that enable phase-matched charge carrier waves.<n>Multiple electronic Fabry-Perot cavities are formed by creating periodically alternating defective and pristine nano-stripes.<n>Defective stripes behave as partially reflecting mirrors and resonantly confine the charge carrier waves within the pristine areas, giving rise to Fabry-Perot resonant modes.<n>These coherent phenomena survive up to 30 K for both polarities of charge carriers, contrarily to traditional monopolar electrostatically created Fabry-Perot interferometers.
arXiv Detail & Related papers (2024-09-07T15:37:23Z) - Long-range interactions in Weyl dense atomic arrays protected from dissipation and disorder [41.94295877935867]
Long-range interactions are a key resource in many quantum phenomena and technologies.
We show how to design the polaritonic bands of these atomic metamaterials to feature a pair of frequency-isolated Weyl points.
These Weyl excitations can thus mediate interactions that are simultaneously long-range, due to their gapless nature; robust, due to the topological protection of Weyl points; and decoherence-free, due to their subradiant character.
arXiv Detail & Related papers (2024-06-18T20:15:16Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Cavity-mediated electron-photon pairs [0.0]
Advancing quantum information, communication and sensing relies on the generation and control of quantum correlations.
We demonstrate the preparation of electron-photon pair states using the phase-matched interaction of free electrons with the evanescent vacuum field of a photonic-chip-based optical microresonator.
arXiv Detail & Related papers (2022-02-25T16:55:36Z) - Purcell-enhanced dipolar interactions in nanostructures [0.0]
Strong light-induced interactions between atoms are known to cause nonlinearities at a few-photon level.
Here, we combine the high densities achievable in thermal atomic vapors with an efficient coupling to a slot waveguide.
The results pave the way towards a robust scalable platform for quantum nonlinear optics and all-optical quantum information processing at room temperature.
arXiv Detail & Related papers (2021-12-21T13:11:59Z) - Strong inelastic scattering of slow electrons by optical near fields of
small nanoparticles [0.0]
We study the inelastic scattering of slow electrons by near fields of small nanostructures.
For weak fields, this results in distinct angular diffraction patterns.
For stronger fields, scattering by the near-field component along the electron trajectory results in a break-up of the energy spectrum into multiple photon orders.
arXiv Detail & Related papers (2021-07-15T17:57:58Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Fast electrical modulation of strong near-field interactions between
erbium emitters and graphene [42.60602838972598]
We show fast, all-electrical modulation of the near-field interactions between a nanolayer of erbium emitters and graphene.
We demonstrate strong interactions with a >1,000-fold increased decay rate for 25% of the emitters.
This opens routes to quantum entanglement generation by collective plasmon emission or photon emission with controlled waveform.
arXiv Detail & Related papers (2020-07-22T08:48:01Z) - Strong interaction of slow electrons with near-field light visited from
first principles [0.0]
We show enhanced coupling can be achieved for systems involving slow electron wavepackets interacting with plasmonic nanoparticles.
Our findings pave the way towards a systematic and realistic understanding of electron-light interactions beyond adiabatic approximations.
arXiv Detail & Related papers (2020-03-31T11:18:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.