論文の概要: Symmetric Convolutional Filters: A Novel Way to Constrain Parameters in
CNN
- arxiv url: http://arxiv.org/abs/2202.13099v1
- Date: Sat, 26 Feb 2022 09:45:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-03 11:16:24.833055
- Title: Symmetric Convolutional Filters: A Novel Way to Constrain Parameters in
CNN
- Title(参考訳): 対称畳み込みフィルタ:CNNにおけるパラメータ制約の新しい方法
- Authors: Harish Agrawal, Sumana T., S.K. Nandy
- Abstract要約: 対称フィルタに基づくCNNのパラメータを制約する新しい手法を提案する。
提案モデルでは,パラメータの冗長性を効果的に一般化し,構造化した除去を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel technique to constrain parameters in CNN based on
symmetric filters. We investigate the impact on SOTA networks when varying the
combinations of symmetricity. We demonstrate that our models offer effective
generalisation and a structured elimination of redundancy in parameters. We
conclude by comparing our method with other pruning techniques.
- Abstract(参考訳): 対称フィルタに基づくCNNのパラメータを制約する新しい手法を提案する。
対称性の組み合わせがSOTAネットワークに与える影響について検討する。
モデルが効果的な一般化とパラメータの冗長性の構造化除去をもたらすことを実証する。
我々は,本手法を他の刈り取り技術と比較することで結論づける。
関連論文リスト
- The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof [50.49582712378289]
ニューラル・ネットワーク・アーキテクチャの導入により,ニューラル・パラメータ・対称性の影響について検討する。
我々は,パラメータ空間対称性を低減するために,標準的なニューラルネットワークを改良する2つの手法を開発した。
実験により,パラメータ対称性の経験的影響に関する興味深い観察がいくつか示された。
論文 参考訳(メタデータ) (2024-05-30T16:32:31Z) - Optimizing Likelihood-free Inference using Self-supervised Neural
Symmetry Embeddings [0.24084786718197512]
物理問題における対称性の辺縁化により、確率自由推論を最適化し、さらに高速にする手法を示す。
本手法は2つの単純な物理問題に対して提案し、正規化フローと比較して少ないパラメータでより高速な収束を示す。
論文 参考訳(メタデータ) (2023-12-11T21:06:07Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Adaptive aggregation of Monte Carlo augmented decomposed filters for efficient group-equivariant convolutional neural network [0.36122488107441414]
グループ等価畳み込みニューラルネットワーク(G-CNN)は、CNNのデータ効率と性能を向上させるためにパラメータ共有に大きく依存している。
群同変ニューラルネットワークに対する非パラメータ共有手法を提案する。
提案手法は, 拡張フィルタの重み付け和により, 多様なフィルタを適応的に集約する。
論文 参考訳(メタデータ) (2023-05-17T10:18:02Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Encoding Involutory Invariance in Neural Networks [1.6371837018687636]
ある状況では、ニューラルネットワーク(NN)は、基礎となる物理対称性に従うデータに基づいて訓練される。
本研究では、関数がパリティまでのインボリュート線型/ファイン変換に対して不変な特別な対称性について検討する。
数値実験により,提案モデルが与えられた対称性を尊重しながらベースラインネットワークより優れていたことが示唆された。
また,本手法を水平/垂直反射対称性を持つデータセットに対する畳み込みNN分類タスクに適用する手法も提案されている。
論文 参考訳(メタデータ) (2021-06-07T16:07:15Z) - Spectral Tensor Train Parameterization of Deep Learning Layers [136.4761580842396]
重み行列の低ランクパラメータ化をDeep Learningコンテキストに埋め込まれたスペクトル特性を用いて検討する。
分類設定におけるニューラルネットワーク圧縮の効果と,生成的対角トレーニング設定における圧縮および安定性トレーニングの改善について述べる。
論文 参考訳(メタデータ) (2021-03-07T00:15:44Z) - Sampling asymmetric open quantum systems for artificial neural networks [77.34726150561087]
非対称な開系に対する高速収束時間と高いスケーラビリティを実現し,非対称性を考慮したハイブリッドサンプリング戦略を提案する。
我々は、ニューラルネットワークの普遍的適用性を強調し、ニューラルネットワークの普遍的適用性を概説する。
論文 参考訳(メタデータ) (2020-12-20T18:25:29Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
我々は,CNNにおいて,畳み込みカーネル間の構造正則化を導入する。
我々はCNNがパラメータや計算量を劇的に減らして性能を維持していることを示す。
論文 参考訳(メタデータ) (2020-09-04T20:41:47Z) - Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in
Histology Images [3.053417311299492]
組織像は本質的に回転下で対称であり、それぞれの方向が等しく現れる。
Dense Steerable Filter CNN (DSF-CNNs) は、密結合されたフレームワークにおいて、各フィルタの複数の回転コピーを持つグループ畳み込みを使用する。
そこで本研究では,DSF-CNNが3つの異なる課題に適用した場合に,パラメータを著しく少なく,最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2020-04-06T23:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。