論文の概要: An Efficient End-to-End 3D Model Reconstructionbased on Neural
Architecture Search
- arxiv url: http://arxiv.org/abs/2202.13313v1
- Date: Sun, 27 Feb 2022 08:53:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-01 16:39:33.860120
- Title: An Efficient End-to-End 3D Model Reconstructionbased on Neural
Architecture Search
- Title(参考訳): ニューラルアーキテクチャ探索に基づく効率的なエンドツーエンド3次元モデル再構成
- Authors: Yongdong Huang, Yuanzhan Li, Xulong Cao, Siyu Zhang, Shen Cai, Ting
Lu, Yuqi Liu
- Abstract要約: ニューラルアーキテクチャサーチ(NAS)とバイナリ分類を用いた効率的なモデル再構成手法を提案する。
本手法は,より少ないネットワークパラメータを用いて,再構成精度を著しく向上する。
- 参考スコア(独自算出の注目度): 5.913946292597174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using neural networks to represent 3D objects has become popular. However,
many previous works employ neural networks with fixed architecture and size to
represent different 3D objects, which lead to excessive network parameters for
simple objects and limited reconstruction accuracy for complex objects. For
each 3D model, it is desirable to have an end-to-end neural network with as few
parameters as possible to achieve high-fidelity reconstruction. In this paper,
we propose an efficient model reconstruction method utilizing neural
architecture search (NAS) and binary classification. Taking the number of
layers, the number of nodes in each layer, and the activation function of each
layer as the search space, a specific network architecture can be obtained
based on reinforcement learning technology. Furthermore, to get rid of the
traditional surface reconstruction algorithms (e.g., marching cube) used after
network inference, we complete the end-to-end network by classifying binary
voxels. Compared to other signed distance field (SDF) prediction or binary
classification networks, our method achieves significantly higher
reconstruction accuracy using fewer network parameters.
- Abstract(参考訳): ニューラルネットワークによる3dオブジェクト表現が普及している。
しかし、以前の多くの作品では、異なる3dオブジェクトを表現するために固定されたアーキテクチャとサイズを持つニューラルネットワークを採用しており、単純なオブジェクトに対する過剰なネットワークパラメータと複雑なオブジェクトの再構成精度が制限されている。
各3Dモデルに対して、高忠実度再構成を実現するために、できるだけ少ないパラメータでエンドツーエンドのニューラルネットワークを持つことが望ましい。
本稿では,ニューラルアーキテクチャ探索(NAS)とバイナリ分類を用いた効率的なモデル再構成手法を提案する。
レイヤ数、各レイヤ内のノード数、各レイヤの活性化機能を探索空間とすることで、強化学習技術に基づいて特定のネットワークアーキテクチャを得ることができる。
さらに,ネットワーク推論後に使用される従来の表面再構成アルゴリズム(例えばマーチングキューブ)を取り除き,バイナリボクセルを分類することでエンドツーエンドネットワークを完成させる。
他の符号付き距離場 (sdf) 予測やバイナリ分類ネットワークと比較すると, ネットワークパラメータの低減により, 復元精度が著しく向上した。
関連論文リスト
- Multi-Objective Neural Architecture Search for In-Memory Computing [0.5892638927736115]
我々は、インメモリコンピューティングアーキテクチャに多様な機械学習(ML)タスクをデプロイする効率を高めるために、ニューラルネットワークサーチ(NAS)を採用している。
IMCアーキテクチャ展開のためのNASアプローチの評価は、3つの異なる画像分類データセットにまたがる。
論文 参考訳(メタデータ) (2024-06-10T19:17:09Z) - Systematic construction of continuous-time neural networks for linear dynamical systems [0.0]
本稿では,動的システムのサブクラスをモデル化するためのニューラルネットワーク構築の体系的アプローチについて論じる。
我々は、各ニューロンの出力が1次または2次常微分方程式(ODE)の解として連続的に進化する連続時間ニューラルネットワークの変種を用いる。
データからネットワークアーキテクチャとパラメータを導出する代わりに、所定のLTIシステムから直接スパースアーキテクチャとネットワークパラメータを計算するための勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-24T16:16:41Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
本稿では,RGB-Dシーケンスからのリアルタイム意味マッピングのための新しい手法を提案する。
2DニューラルネットワークとSLAMシステムに基づく3Dネットワークと3D占有マッピングを組み合わせる。
本システムは,2D-3Dネットワークベースシステムにおいて,最先端のセマンティックマッピング品質を実現する。
論文 参考訳(メタデータ) (2023-06-28T22:36:44Z) - DNArch: Learning Convolutional Neural Architectures by Backpropagation [19.399535453449488]
我々は,畳み込みニューラルネットワーク(CNN)の重みと構造をバックプロパゲーションによって共同で学習する手法であるDNArchを提案する。
特に、DNArchでは、(i)各層における畳み込みカーネルのサイズ、(ii)各層におけるチャネルの数、(iii)ダウンサンプリングレイヤの位置と値、(iv)ネットワークの深さを学習することができる。
論文 参考訳(メタデータ) (2023-02-10T17:56:49Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
モノクロ画像から3次元物体を再構成する深層強化学習手法を提案する。
提案手法は, 視覚的品質, 再構成精度, 計算時間において, 最先端技術よりも優れる。
論文 参考訳(メタデータ) (2021-09-24T09:44:22Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
firefly neural architecture descentは、ニューラルネットワークを漸進的かつ動的に成長させるための一般的なフレームワークである。
ホタルの降下は、より広く、より深くネットワークを柔軟に成長させ、正確だがリソース効率のよいニューラルアーキテクチャを学習するために応用できることを示す。
特に、サイズは小さいが、最先端の手法で学習したネットワークよりも平均精度が高いネットワークを学習する。
論文 参考訳(メタデータ) (2021-02-17T04:47:18Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
本稿では,高忠実度ニューラルネットワークSDFのリアルタイムレンダリングを可能にする,効率的なニューラル表現を提案する。
我々の表現は、以前の作品に比べてレンダリング速度の点で2~3桁の効率であることを示す。
論文 参考訳(メタデータ) (2021-01-26T18:50:22Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
我々は,グローバルな残差学習と局所的なマイクロセンスアグリゲーションを備えた新しいアーキテクチャであるMicro-Dense Netsを提案する。
我々のマイクロセンスブロックはニューラルアーキテクチャ検索に基づくモデルと統合して性能を向上させることができる。
論文 参考訳(メタデータ) (2020-04-19T08:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。