Robust resource-efficient quantum variational ansatz through
evolutionary algorithm
- URL: http://arxiv.org/abs/2202.13714v2
- Date: Thu, 19 May 2022 08:03:09 GMT
- Title: Robust resource-efficient quantum variational ansatz through
evolutionary algorithm
- Authors: Yuhan Huang, Qingyu Li, Xiaokai Hou, Rebing Wu, Man-Hong Yung,
Abolfazl Bayat, Xiaoting Wang
- Abstract summary: Vari quantum algorithms (VQAsational) are promising methods to demonstrate quantum advantage on near-term devices.
We show that a fixed VQA circuit design, such as the widely-used hardware efficient ansatz, is not necessarily robust against imperfections.
We propose a genome-length-adjustable evolutionary algorithm to design a robust VQA circuit that is optimized over variations of both circuit ansatz and gate parameters.
- Score: 0.46180371154032895
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Variational quantum algorithms (VQAs) are promising methods to demonstrate
quantum advantage on near-term devices as the required resources are divided
between a quantum simulator and a classical optimizer. As such, designing a VQA
which is resource-efficient and robust against noise is a key factor to achieve
potential advantage with the existing noisy quantum simulators. It turns out
that a fixed VQA circuit design, such as the widely-used hardware efficient
ansatz, is not necessarily robust against imperfections. In this work, we
propose a genome-length-adjustable evolutionary algorithm to design a robust
VQA circuit that is optimized over variations of both circuit ansatz and gate
parameters, without any prior assumptions on circuit structure or depth.
Remarkably, our method not only generates a noise-effect-minimized circuit with
shallow depth, but also accelerates the classical optimization by substantially
reducing the number of parameters. In this regard, the optimized circuit is far
more resource-efficient with respect to both quantum and classical resources.
As applications, based on two typical error models in VQA, we apply our method
to calculate the ground energy of the hydrogen and the water molecules as well
as the Heisenberg model. Simulations suggest that compared with conventional
hardware efficient ansatz, our circuit-structure-tunable method can generate
circuits apparently more robust against both coherent and incoherent noise, and
hence is more likely to be implemented on near-term devices.
Related papers
- Pulse-based variational quantum optimization and metalearning in superconducting circuits [3.770494165043573]
We introduce pulse-based variational quantum optimization (PBVQO) as a hardware-level framework.
We illustrate the framework by optimizing external superconducting on quantum interference devices.
The synergy between PBVQO and meta-learning provides an advantage over conventional gate-based variational algorithms.
arXiv Detail & Related papers (2024-07-17T15:05:36Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Curriculum reinforcement learning for quantum architecture search under
hardware errors [1.583327010995414]
This work introduces a curriculum-based reinforcement learning QAS (CRLQAS) designed to tackle challenges in VQA deployment.
The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently.
To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in noisy quantum circuits.
arXiv Detail & Related papers (2024-02-05T20:33:00Z) - Quantum Circuit Optimization through Iteratively Pre-Conditioned
Gradient Descent [0.4915744683251151]
iteratively preconditioned gradient descent (IPG) for optimizing quantum circuits and demonstrate performance speedups for state preparation and implementation of quantum algorithmics.
We show an improvement in fidelity by a factor of $104$ for preparing a 4-qubit W state and a maximally entangled 5-qubit GHZ state compared to other commonly used classicals tuning the same ansatz.
We also show gains for optimizing a unitary for a quantum Fourier transform using IPG, and report results of running such optimized circuits on IonQ's quantum processing unit (QPU)
arXiv Detail & Related papers (2023-09-18T17:30:03Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
We argue that noise makes evaluations of the objective function via quantum circuits biased.
We derive the missing guarantees and find that the rate of convergence is unaffected.
arXiv Detail & Related papers (2022-09-21T19:18:41Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Classically optimal variational quantum algorithms [0.0]
Hybrid quantum-classical algorithms, such as variational quantum algorithms (VQA), are suitable for implementation on NISQ computers.
In this Letter we expand an implicit step of VQAs: the classical pre-computation subroutine which can non-trivially use classical algorithms to simplify, transform, or specify problem instance-specific variational quantum circuits.
arXiv Detail & Related papers (2021-03-31T13:33:38Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.