Topological fracton quantum phase transitions by tuning exact tensor
network states
- URL: http://arxiv.org/abs/2203.00015v2
- Date: Mon, 29 May 2023 09:08:42 GMT
- Title: Topological fracton quantum phase transitions by tuning exact tensor
network states
- Authors: Guo-Yi Zhu, Ji-Yao Chen, Peng Ye, Simon Trebst
- Abstract summary: Gapped fracton phases of matter generalize the concept of topological order.
We employ an exact 3D quantum tensor-network approach to study a prototypical X cube fracton model.
- Score: 1.0753191494611891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gapped fracton phases of matter generalize the concept of topological order
and broaden our fundamental understanding of entanglement in quantum many-body
systems. However, their analytical or numerical description beyond exactly
solvable models remains a formidable challenge. Here we employ an exact 3D
quantum tensor-network approach that allows us to study a $\mathbb{Z}_N$
generalization of the prototypical X cube fracton model and its quantum phase
transitions between distinct topological states via fully tractable
wavefunction deformations. We map the (deformed) quantum states exactly to a
combination of a classical lattice gauge theory and a plaquette clock model,
and employ numerical techniques to calculate various entanglement order
parameters. For the $\mathbb{Z}_N$ model we find a family of (weakly)
first-order fracton confinement transitions that in the limit of $N\to\infty$
converge to a continuous phase transition beyond the Landau-Ginzburg-Wilson
paradigm. We also discover a line of 3D conformal quantum critical points (with
critical magnetic flux loop fluctuations) which, in the $N\to\infty$ limit,
appears to coexist with a gapless deconfined fracton state.
Related papers
- Probing Confinement Through Dynamical Quantum Phase Transitions: From
Quantum Spin Models to Lattice Gauge Theories [0.0]
We show that a change in the type of dynamical quantum phase transitions accompanies the confinement-deconfinement transition.
Our conclusions can be tested in modern quantum-simulation platforms, such as ion-trap setups and cold-atom experiments of gauge theories.
arXiv Detail & Related papers (2023-10-18T18:00:04Z) - Cubic* criticality emerging from a quantum loop model on triangular lattice [5.252398154171938]
We show that the triangular lattice quantum loop model (QLM) hosts a rich ground state phase diagram with nematic, vison plaquette (VP) crystals, and the $mathbb$ quantum spin liquid (QSL) close to the Rokhsar-Kivelson quantum critical point.
These solutions are of immediate relevance to both statistical and quantum field theories, as well as the rapidly growing experiments in Rydberg atom arrays and quantum moir'e materials.
arXiv Detail & Related papers (2023-09-11T18:00:05Z) - Quantum Alchemy and Universal Orthogonality Catastrophe in
One-Dimensional Anyons [2.9491988705158843]
We characterize the geometry of quantum states associated with different values of $kappa$, i.e., different quantum statistics.
We characterize this decay using quantum speed limits on the flow of $kappa$, illustrate our results with a model of hard-core anyons, and discuss possible experiments in quantum simulation.
arXiv Detail & Related papers (2022-10-19T17:59:59Z) - Hidden orders and phase transitions for the fully packed quantum loop model on the triangular lattice [4.795065373710478]
Quantum loop and dimer models are prototypical correlated systems with local constraints.
We reveal the complete phase diagram of the triangular-lattice fully packed quantum loop model.
Our results are of relevance to recent developments in both experiments and theory, and facilitate further investigations of hidden phases and transitions.
arXiv Detail & Related papers (2022-05-09T18:00:00Z) - Tuning the Topological $\theta$-Angle in Cold-Atom Quantum Simulators of
Gauge Theories [3.4075669047370125]
We show how a tunable topological $theta$-term can be added to a prototype theory with gauge symmetry.
The model can be realized experimentally in a single-species Bose--Hubbard model in an optical superlattice with three different spatial periods.
This work opens the door towards studying the rich physics of topological gauge-theory terms in large-scale cold-atom quantum simulators.
arXiv Detail & Related papers (2022-04-13T18:00:01Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Quantum phase transition in the one-dimensional Dicke-Hubbard model with
coupled qubits [20.002319486166016]
We study the ground state phase diagram of a one-dimensional two qubits Dicke-Hubbard model with XY qubit-qubit interaction.
arXiv Detail & Related papers (2021-11-05T13:17:49Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.