Investigating the Spatiotemporal Charging Demand and Travel Behavior of
Electric Vehicles Using GPS Data: A Machine Learning Approach
- URL: http://arxiv.org/abs/2203.00135v1
- Date: Mon, 28 Feb 2022 23:11:30 GMT
- Title: Investigating the Spatiotemporal Charging Demand and Travel Behavior of
Electric Vehicles Using GPS Data: A Machine Learning Approach
- Authors: Sina Baghali, Zhaomiao Guo, Samiul Hasan
- Abstract summary: Electric vehicles (EVs) may change the travel behavior of drivers and pose a significant electricity demand on the power system.
Since the electricity demand depends on the travel behavior of EVs, the forecasting of daily charging demand (CD) will be a challenging task.
In this paper, we use the recorded GPS data of EVs and conventional gasoline-powered vehicles from the same city to investigate the potential shift in the travel behavior of drivers.
- Score: 1.160208922584163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing market penetration of electric vehicles (EVs) may change the
travel behavior of drivers and pose a significant electricity demand on the
power system. Since the electricity demand depends on the travel behavior of
EVs, which are inherently uncertain, the forecasting of daily charging demand
(CD) will be a challenging task. In this paper, we use the recorded GPS data of
EVs and conventional gasoline-powered vehicles from the same city to
investigate the potential shift in the travel behavior of drivers from
conventional vehicles to EVs and forecast the spatiotemporal patterns of daily
CD. Our analysis reveals that the travel behavior of EVs and conventional
vehicles are similar. Also, the forecasting results indicate that the developed
models can generate accurate spatiotemporal patterns of the daily CD.
Related papers
- GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - Data-Driven Probabilistic Energy Consumption Estimation for Battery
Electric Vehicles with Model Uncertainty [1.0787390511207684]
We propose a new driver behaviour-centric EV energy consumption estimation model using probabilistic neural networks with model uncertainty.
By incorporating model uncertainty into neural networks, we have created an ensemble of neural networks using Monte Carlo.
Our approach achieves a mean absolute percentage error of 9.3% and outperforms other existing EV energy consumption models in terms of accuracy.
arXiv Detail & Related papers (2023-07-02T04:30:20Z) - Forecasting Electric Vehicle Charging Station Occupancy: Smarter
Mobility Data Challenge [0.0]
The Smarter Mobility Data Challenge has focused on the development of forecasting models to predict EV charging station occupancy.
This challenge involved analysing a dataset of 91 charging stations across four geographical areas over seven months in 2020- 2021.
The results highlight the potential of hierarchical forecasting approaches to accurately predict EV charging station occupancy.
arXiv Detail & Related papers (2023-06-09T07:22:18Z) - Online Learning Models for Vehicle Usage Prediction During COVID-19 [2.287415292857564]
This study attempts to predict the departure time and distance of the first drive each day using online machine learning models.
The online machine learning models are trained and evaluated on historical driving data collected from a fleet of BEVs during the COVID-19 pandemic.
Based on our results, the best-performing prediction models yield an aggregated mean absolute error of 2.75 hours when predicting departure time and 13.37 km when predicting trip distance.
arXiv Detail & Related papers (2022-10-28T09:09:34Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Predicting vehicles parking behaviour in shared premises for aggregated
EV electricity demand response programs [3.448121798373834]
We propose a methodology to predict an estimation of the parking duration in shared parking premises.
We formalize the prediction problem as a supervised machine learning task to predict the duration of the parking event.
This predicted duration feeds the energy management system that will allocate the power over the duration reducing the overall peak electricity demand.
arXiv Detail & Related papers (2021-09-20T16:33:17Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Analyzing the Travel and Charging Behavior of Electric Vehicles -- A
Data-driven Approach [1.7403133838762446]
Electric vehicles (EVs) may pose significant electricity demand on power systems.
In this project, we use the National House Hold Survey (NHTS) data to form sequences of trips.
We develop machine learning models to predict the parameters of the next trip of the drivers, including trip start time, end time, and distance.
arXiv Detail & Related papers (2021-06-11T15:53:59Z) - Investigating Underlying Drivers of Variability in Residential Energy
Usage Patterns with Daily Load Shape Clustering of Smart Meter Data [53.51471969978107]
Large-scale deployment of smart meters has motivated increasing studies to explore disaggregated daily load patterns.
This paper aims to shed light on the mechanisms by which electricity consumption patterns exhibit variability.
arXiv Detail & Related papers (2021-02-16T16:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.