論文の概要: A predictive analytics approach for stroke prediction using machine
learning and neural networks
- arxiv url: http://arxiv.org/abs/2203.00497v1
- Date: Tue, 1 Mar 2022 14:45:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-02 14:52:34.479039
- Title: A predictive analytics approach for stroke prediction using machine
learning and neural networks
- Title(参考訳): 機械学習とニューラルネットワークを用いた脳卒中予測のための予測分析手法
- Authors: Soumyabrata Dev, Hewei Wang, Chidozie Shamrock Nwosu, Nishtha Jain,
Bharadwaj Veeravalli, and Deepu John
- Abstract要約: 本稿では,脳卒中予測のための電子健康記録の諸因子を系統的に分析する。
年齢、心臓病、平均血糖値、高血圧が脳卒中を検出する最も重要な要因である。
これら4つの属性を用いたパーセプトロンニューラルネットワークは、最高精度と最低ミス率を提供する。
- 参考スコア(独自算出の注目度): 4.984181486695979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The negative impact of stroke in society has led to concerted efforts to
improve the management and diagnosis of stroke. With an increased synergy
between technology and medical diagnosis, caregivers create opportunities for
better patient management by systematically mining and archiving the patients'
medical records. Therefore, it is vital to study the interdependency of these
risk factors in patients' health records and understand their relative
contribution to stroke prediction. This paper systematically analyzes the
various factors in electronic health records for effective stroke prediction.
Using various statistical techniques and principal component analysis, we
identify the most important factors for stroke prediction. We conclude that
age, heart disease, average glucose level, and hypertension are the most
important factors for detecting stroke in patients. Furthermore, a perceptron
neural network using these four attributes provides the highest accuracy rate
and lowest miss rate compared to using all available input features and other
benchmarking algorithms. As the dataset is highly imbalanced concerning the
occurrence of stroke, we report our results on a balanced dataset created via
sub-sampling techniques.
- Abstract(参考訳): 社会における脳梗塞の負の影響は、脳卒中の管理と診断を改善するための共同努力につながっている。
技術と医療診断の相乗効果が高まり、介護者は患者の医療記録を体系的に発掘しアーカイブすることで、より良い患者管理の機会を創出する。
したがって、患者の健康記録におけるこれらの危険因子の相互依存性を調べ、脳卒中予測への相対的寄与を理解することが重要である。
本稿では,脳卒中予測のための電子健康記録の諸因子を系統的に分析する。
様々な統計手法と主成分分析を用いて、脳卒中予測の最も重要な要因を同定する。
以上の結果から, 年齢, 心疾患, 平均血糖値, 高血圧が脳卒中検出の最も重要な因子であることが示唆された。
さらに、これら4つの属性を用いたパーセプトロンニューラルネットワークは、利用可能なすべての入力特徴や他のベンチマークアルゴリズムを使用する場合と比較して、高い精度と最も低いミス率を提供する。
脳卒中の発生に関してデータセットは高度にバランスが取れないため,サブサンプリング技術を用いて作成したバランスの取れたデータセットについて報告する。
関連論文リスト
- Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment [0.0]
本稿では,臨床データを用いた心疾患のリスク予測における機械学習モデルの役割,関連性,効率性を理解し,評価し,分析する。
Support Vector Machine (SVM) は91.51%の精度を示し、予測能力の観点から評価されたモデル間にその優位性を確認している。
論文 参考訳(メタデータ) (2024-10-16T22:32:19Z) - Deciphering Cardiac Destiny: Unveiling Future Risks Through Cutting-Edge Machine Learning Approaches [0.0]
本研究の目的は,心停止事故のタイムリー同定のための予測モデルの開発と評価である。
我々は、XGBoost、Gradient Boosting、Naive Bayesといった機械学習アルゴリズムと、リカレントニューラルネットワーク(RNN)によるディープラーニング(DL)アプローチを採用しています。
厳密な実験と検証により,RNNモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2024-09-03T19:18:16Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach [0.44998333629984877]
我々は,データのバランスが不均衡でサンプルサイズが小さい場合に,より正確な予測を行うために,データのバランスと拡張のための方法論を開発する。
実験の結果,提案手法の平均精度は95.36であり,ランダムフォレスト(RF),決定木(DT),サポートベクターマシン(SVM),ロジスティック回帰(LR),人工ニューラルネットワーク(ANN)よりも高かった。
論文 参考訳(メタデータ) (2023-08-29T14:33:38Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
集中治療ユニット(ICU、Intensive Care Unit)は、重篤な患者を認め、継続的な監視と治療を提供する病院の最も重要な部分の1つである。
臨床意思決定における医療従事者を支援するために,様々な患者結果予測手法が試みられている。
論文 参考訳(メタデータ) (2023-08-24T05:26:56Z) - Identifying Stroke Indicators Using Rough Sets [0.7340017786387767]
そこで本研究では,脳卒中検出における各種EMHレコードの重要性をランキングする手法を提案する。
年齢, 平均血糖値, 心疾患, 高血圧が脳卒中検出の最も重要な要因であった。
論文 参考訳(メタデータ) (2021-10-19T06:04:48Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
臨床試験は、有効性、安全性、または患者採用の問題により、不確実な結果に直面する。
本稿では,より一般的な臨床試験結果予測のための階層型Interaction Network(HINT)を提案する。
論文 参考訳(メタデータ) (2021-02-08T15:09:07Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
本稿では,電子カルテから心血管イベントを予測するための注意機構を備えたマルチタスク・リカレントニューラルネットワークを提案する。
提案手法は、NHS Foundation Trustの5年間のデータを用いて、標準的な臨床リスク予測器(QRISK)と機械学習の代替手段と比較される。
論文 参考訳(メタデータ) (2020-07-16T17:43:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。