論文の概要: Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment
- arxiv url: http://arxiv.org/abs/2410.14738v1
- Date: Wed, 16 Oct 2024 22:32:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:17:44.055724
- Title: Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment
- Title(参考訳): 心臓疾患予測の進歩:早期発見とリスクアセスメントのための機械学習アプローチ
- Authors: Balaji Shesharao Ingole, Vishnu Ramineni, Nikhil Bangad, Koushik Kumar Ganeeb, Priyankkumar Patel,
- Abstract要約: 本稿では,臨床データを用いた心疾患のリスク予測における機械学習モデルの役割,関連性,効率性を理解し,評価し,分析する。
Support Vector Machine (SVM) は91.51%の精度を示し、予測能力の観点から評価されたモデル間にその優位性を確認している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The primary aim of this paper is to comprehend, assess, and analyze the role, relevance, and efficiency of machine learning models in predicting heart disease risks using clinical data. While the importance of heart disease risk prediction cannot be overstated, the application of machine learning (ML) in identifying and evaluating the impact of various features on the classification of patients with and without heart disease, as well as in generating a reliable clinical dataset, is equally significant. This study relies primarily on cross-sectional clinical data. The ML approach is designed to enhance the consideration of various clinical features in the heart disease prognosis process. Some features emerge as strong predictors, adding significant value. The paper evaluates seven ML classifiers: Logistic Regression, Random Forest, Decision Tree, Naive Bayes, k-Nearest Neighbors, Neural Networks, and Support Vector Machine (SVM). The performance of each model is assessed based on accuracy metrics. Notably, the Support Vector Machine (SVM) demonstrates the highest accuracy at 91.51%, confirming its superiority among the evaluated models in terms of predictive capability. The overall findings of this research highlight the advantages of advanced computational methodologies in the evaluation, prediction, improvement, and management of cardiovascular risks. In other words, the strong performance of the SVM model illustrates its applicability and value in clinical settings, paving the way for further advancements in personalized medicine and healthcare.
- Abstract(参考訳): 本研究の主な目的は,臨床データを用いた心臓病リスク予測における機械学習モデルの役割,妥当性,効率の理解,評価,分析である。
心臓病のリスク予測の重要性は過大評価できないが、様々な特徴が心疾患および非心疾患患者の分類および信頼性のある臨床データセットの作成に与える影響を識別・評価するための機械学習(ML)の適用は、同様に重要である。
本研究は主に横断的臨床データに依存している。
MLアプローチは、心臓疾患の予後過程における様々な臨床特徴の考慮を高めるために設計されている。
いくつかの機能は強力な予測子として現れ、大きな価値が加わる。
本稿では,ロジスティック回帰,ランダムフォレスト,決定木,ナイーブベイズ,k-Nearest Neighbors,ニューラルネットワーク,サポートベクトルマシン(SVM)の7つのML分類器を評価する。
各モデルの性能は精度の指標に基づいて評価される。
特に、SVM(Support Vector Machine)は91.51%の精度を示し、予測能力の観点から評価されたモデル間にその優位性を確認している。
本研究の総合的な知見は, 心血管リスクの評価, 予測, 改善, 管理における高度な計算手法の利点を浮き彫りにするものである。
言い換えれば、SVMモデルの強力なパフォーマンスは、その適用性と臨床的設定の価値を示し、パーソナライズされた医療と医療のさらなる進歩への道を開く。
関連論文リスト
- Predicting Mortality and Functional Status Scores of Traumatic Brain Injury Patients using Supervised Machine Learning [0.0]
外傷性脳損傷(TBI)は公衆衛生上の重大な課題であり、しばしば死亡または持続性障害を引き起こす。
死亡率や機能的状態尺度(FSS)のスコアなどの予測結果は治療戦略を強化し、臨床的な意思決定を通知することができる。
本研究では,300名の小児TBI患者の現実的データセットを用いて,機械学習(ML)を用いて死亡率とFSSスコアを予測する。
論文 参考訳(メタデータ) (2024-10-27T00:44:45Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Deciphering Cardiac Destiny: Unveiling Future Risks Through Cutting-Edge Machine Learning Approaches [0.0]
本研究の目的は,心停止事故のタイムリー同定のための予測モデルの開発と評価である。
我々は、XGBoost、Gradient Boosting、Naive Bayesといった機械学習アルゴリズムと、リカレントニューラルネットワーク(RNN)によるディープラーニング(DL)アプローチを採用しています。
厳密な実験と検証により,RNNモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2024-09-03T19:18:16Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
心臓不全は世界中の何百万人もの人々に影響を与え、生活の質を著しく低下させ、高い死亡率をもたらす。
広範な研究にもかかわらず、ICU患者の心不全と死亡率の関係は、完全には理解されていない。
本研究は、ICD-9コードを用いて、MIMIC-IIIデータベースから18歳以上の1,177人のデータを解析した。
論文 参考訳(メタデータ) (2024-09-03T07:57:08Z) - Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
機械学習(ML)は、高度なアルゴリズムと臨床データを統合することで、医学的診断に革命をもたらした。
RFモデルは高次元データの処理において堅牢な性能を示す。
CNNは、がん検出において異常な精度を示している。
LSTMネットワークは、時間的データの解析に優れ、臨床劣化の正確な予測を提供する。
論文 参考訳(メタデータ) (2024-08-05T09:41:34Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm [0.0]
心不全は、我々の時代における主要な健康上の危険問題の1つであり、世界中の死因の1つです。
データマイニングは、医療機関が生成した大量の生データを意味のある情報に変換するプロセスである。
本研究は, 心不全後の生存可能性を予測するためには, 患者から採取した特定の属性のみが必須であることが示唆された。
論文 参考訳(メタデータ) (2021-08-30T16:42:27Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。