論文の概要: AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach
- arxiv url: http://arxiv.org/abs/2308.15339v1
- Date: Tue, 29 Aug 2023 14:33:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 13:43:05.593718
- Title: AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach
- Title(参考訳): 冠動脈疾患早期診断のためのAIフレームワーク:境界SMOTE,オートエンコーダ,畳み込みニューラルネットワークアプローチの統合
- Authors: Elham Nasarian, Danial Sharifrazi, Saman Mohsenirad, Kwok Tsui,
Roohallah Alizadehsani
- Abstract要約: 我々は,データのバランスが不均衡でサンプルサイズが小さい場合に,より正確な予測を行うために,データのバランスと拡張のための方法論を開発する。
実験の結果,提案手法の平均精度は95.36であり,ランダムフォレスト(RF),決定木(DT),サポートベクターマシン(SVM),ロジスティック回帰(LR),人工ニューラルネットワーク(ANN)よりも高かった。
- 参考スコア(独自算出の注目度): 0.44998333629984877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accuracy of coronary artery disease (CAD) diagnosis is dependent on a
variety of factors, including demographic, symptom, and medical examination,
ECG, and echocardiography data, among others. In this context, artificial
intelligence (AI) can help clinicians identify high-risk patients early in the
diagnostic process, by synthesizing information from multiple factors. To this
aim, Machine Learning algorithms are used to classify patients based on their
CAD disease risk. In this study, we contribute to this research filed by
developing a methodology for balancing and augmenting data for more accurate
prediction when the data is imbalanced and the sample size is small. The
methodology can be used in a variety of other situations, particularly when
data collection is expensive and the sample size is small. The experimental
results revealed that the average accuracy of our proposed method for CAD
prediction was 95.36, and was higher than random forest (RF), decision tree
(DT), support vector machine (SVM), logistic regression (LR), and artificial
neural network (ANN).
- Abstract(参考訳): 冠動脈疾患 (CAD) の診断精度は, 人口統計, 症状, 臨床検査, 心電図, 心エコーデータなど, 様々な因子に依存する。
この文脈において、人工知能(AI)は、複数の因子から情報を合成することにより、診断過程の初期段階で高リスク患者を特定するのに役立つ。
この目的のために,CAD 病リスクに基づいて,機械学習アルゴリズムを用いて患者を分類する。
本研究では,データの不均衡とサンプルサイズが小さい場合に,より正確な予測を行うために,データのバランスと拡張を行う手法を考案し,本研究に寄与する。
この方法論は、特にデータ収集が高価でサンプルサイズが小さい場合に、他の様々な状況で使用できる。
実験の結果,提案手法の平均精度は95.36であり,ランダムフォレスト(RF),決定木(DT),サポートベクターマシン(SVM),ロジスティック回帰(LR),人工ニューラルネットワーク(ANN)よりも高かった。
関連論文リスト
- Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
機械学習(ML)は、高度なアルゴリズムと臨床データを統合することで、医学的診断に革命をもたらした。
RFモデルは高次元データの処理において堅牢な性能を示す。
CNNは、がん検出において異常な精度を示している。
LSTMネットワークは、時間的データの解析に優れ、臨床劣化の正確な予測を提供する。
論文 参考訳(メタデータ) (2024-08-05T09:41:34Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Estimating the severity of dental and oral problems via sentiment
classification over clinical reports [0.8287206589886879]
テキストにおける著者の感情を分析することは、医学や歯科など様々な分野において実用的で有用である。
CNN-LSTMとして知られる畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)ネットワークアーキテクチャに基づくディープラーニングモデルを開発した。
論文 参考訳(メタデータ) (2024-01-17T14:33:13Z) - Multitask Deep Learning for Accurate Risk Stratification and Prediction
of Next Steps for Coronary CT Angiography Patients [26.50934421749854]
リスク階層化と下流テスト選択を支援するマルチタスク深層学習モデルを提案する。
提案手法は,CADのリスク層化において0.76AUC,下流試験では0.72AUCの受信機動作特性を持つCurve(AUC)のエリアを達成した。
論文 参考訳(メタデータ) (2023-09-01T08:34:13Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
集中治療ユニット(ICU、Intensive Care Unit)は、重篤な患者を認め、継続的な監視と治療を提供する病院の最も重要な部分の1つである。
臨床意思決定における医療従事者を支援するために,様々な患者結果予測手法が試みられている。
論文 参考訳(メタデータ) (2023-08-24T05:26:56Z) - Multi-confound regression adversarial network for deep learning-based
diagnosis on highly heterogenous clinical data [1.2891210250935143]
我々は、高度に異種な臨床データに基づいてディープラーニングモデルを訓練するための新しいディープラーニングアーキテクチャ、MUCRANを開発した。
われわれは、2019年以前にマサチューセッツ総合病院から収集した16,821個の臨床T1軸性脳MRIを用いてMUCRANを訓練した。
このモデルでは,新たに収集したデータに対して90%以上の精度で頑健な性能を示した。
論文 参考訳(メタデータ) (2022-05-05T18:39:09Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。