論文の概要: Machine learning based lens-free imaging technique for field-portable
cytometry
- arxiv url: http://arxiv.org/abs/2203.00899v2
- Date: Thu, 3 Mar 2022 03:58:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-04 12:54:03.499657
- Title: Machine learning based lens-free imaging technique for field-portable
cytometry
- Title(参考訳): 機械学習によるフィールド可搬型サイトメトリーのためのレンズレスイメージング技術
- Authors: Rajkumar Vaghashiya, Sanghoon Shin, Varun Chauhan, Kaushal Kapadiya,
Smit Sanghavi, Sungkyu Seo, Mohendra Roy
- Abstract要約: 提案手法の精度は98%に向上し,多くの細胞に対して5dB以上の信号が増強された。
モデルは、数回の学習イテレーションで新しいタイプのサンプルを学ぶために適応し、新しく導入されたサンプルをうまく分類することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Lens-free Shadow Imaging Technique (LSIT) is a well-established technique for
the characterization of microparticles and biological cells. Due to its
simplicity and cost-effectiveness, various low-cost solutions have been
evolved, such as automatic analysis of complete blood count (CBC), cell
viability, 2D cell morphology, 3D cell tomography, etc. The developed auto
characterization algorithm so far for this custom-developed LSIT cytometer was
based on the hand-crafted features of the cell diffraction patterns from the
LSIT cytometer, that were determined from our empirical findings on thousands
of samples of individual cell types, which limit the system in terms of
induction of a new cell type for auto classification or characterization.
Further, its performance is suffering from poor image (cell diffraction
pattern) signatures due to its small signal or background noise. In this work,
we address these issues by leveraging the artificial intelligence-powered auto
signal enhancing scheme such as denoising autoencoder and adaptive cell
characterization technique based on the transfer of learning in deep neural
networks. The performance of our proposed method shows an increase in accuracy
>98% along with the signal enhancement of >5 dB for most of the cell types,
such as Red Blood Cell (RBC) and White Blood Cell (WBC). Furthermore, the model
is adaptive to learn new type of samples within a few learning iterations and
able to successfully classify the newly introduced sample along with the
existing other sample types.
- Abstract(参考訳): レンズフリーシャドウイメージング技術(LSIT)は、マイクロ粒子や生体細胞のキャラクタリゼーションのための確立された技術である。
その単純さと費用対効果により、完全血球数(CBC)の自動解析、細胞生存性、2D細胞形態学、3D細胞トモグラフィーなど、様々な低コストのソリューションが進化してきた。
このカスタム開発のlsitcytometer用自動キャラクタリゼーションアルゴリズムは、lsitcytometerの細胞回折パターンを手作りした特徴に基づいており、その特徴は個々の細胞タイプの何千ものサンプルから得られた実験結果から決定され、自動分類やキャラクタリゼーションのための新しい細胞タイプの導入によってシステムを制限した。
さらに、その性能は、小さな信号や背景雑音による画像(細胞回折パターン)の符号に悩まされている。
本研究では,深層ニューラルネットワークにおける学習の伝達に基づく自動エンコーダや適応セルキャラクタリゼーション技術などの人工知能による自動信号強調手法を活用することで,これらの課題に対処する。
提案法の性能は, 赤血球 (rbc) や白血球 (wbc) といったほとんどの細胞タイプにおいて, 信号の5db以上の増加とともに98%以上の精度向上を示した。
さらに、モデルは、数回の学習イテレーションで新しいタイプのサンプルを学習し、既存のサンプルタイプとともに新しく導入されたサンプルをうまく分類することができる。
関連論文リスト
- MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
単一細胞データセットは、しばしば個々の細胞ラベルを欠いているため、病気に関連する細胞を特定することは困難である。
セルレベルの分類器の訓練と校正を可能にする予測手法であるMixture Modeling for Multiple Learning Instance (MMIL)を導入する。
論文 参考訳(メタデータ) (2024-06-12T15:22:56Z) - Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
本研究は,光収差下でのセル画像のセグメンテーションモデルについて,蛍光顕微鏡と光電場顕微鏡を用いて評価する。
ネットワークヘッドの異なるOstoしきい値法やMask R-CNNなどのセグメンテーションモデルをトレーニングし,テストする。
対照的に、Cellpose 2.0は同様の条件下で複雑な細胞画像に有効であることが証明されている。
論文 参考訳(メタデータ) (2024-04-12T15:45:26Z) - Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
ニューラルセルオートマトン(NCA)を用いた白血球分類の新しいアプローチを提案する。
NCAに基づく手法はパラメータの面で著しく小さく,ドメインシフトに対する堅牢性を示す。
その結果,NAAは画像分類に利用でき,従来の手法の課題に対処できることがわかった。
論文 参考訳(メタデータ) (2024-04-08T14:59:53Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Interpretable Single-Cell Set Classification with Kernel Mean Embeddings [14.686560033030101]
Kernel Mean Embeddingは、各プロファイルされた生物学的サンプルの細胞景観をエンコードする。
簡単な線形分類器を訓練し、3つのフローおよび質量データセットの最先端の分類精度を実現する。
論文 参考訳(メタデータ) (2022-01-18T21:40:36Z) - Analysis of Vision-based Abnormal Red Blood Cell Classification [1.6050172226234583]
赤血球(RBC)の異常の同定は、貧血から肝疾患まで幅広い医学的疾患を診断する鍵となる。
本稿では,機械学習の利点を利用したセル異常検出のキャパシティ向上と標準化を目的とした自動化プロセスを提案する。
論文 参考訳(メタデータ) (2021-06-01T10:52:41Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
ニューラルネットワークのアンサンブルを用いて生体医用画像の分類を行う。
ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign。
論文 参考訳(メタデータ) (2020-11-24T01:53:39Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Automated Phenotyping via Cell Auto Training (CAT) on the Cell DIVE
Platform [0.5599792629509229]
多重蛍光画像を用いた自動トレーニングセットを用いて, 組織試料中の細胞の自動分類法を提案する。
本発明の方法は、ロバストなハイパープレックス免疫蛍光プラットフォーム上の1つの組織部位に、その場で染色された複数のマーカーを利用する。
論文 参考訳(メタデータ) (2020-07-18T16:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。