論文の概要: Differentiable Iterated Function Systems
- arxiv url: http://arxiv.org/abs/2203.01231v2
- Date: Mon, 10 Jun 2024 15:49:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 01:45:51.253438
- Title: Differentiable Iterated Function Systems
- Title(参考訳): 微分可能な反復関数系
- Authors: Cory Braker Scott,
- Abstract要約: 本稿では、微分可能なレンダリングパイプラインを用いたIFSフラクタルのレンダリングにおける初期探索について述べる。
IFSフラクタルを所定のターゲット画像に類似した固定点で生成することで、このパイプラインを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This preliminary paper presents initial explorations in rendering Iterated Function System (IFS) fractals using a differentiable rendering pipeline. Differentiable rendering is a recent innovation at the intersection of computer graphics and machine learning. A fractal rendering pipeline composed of differentiable operations opens up many possibilities for generating fractals that meet particular criteria. In this paper I demonstrate this pipeline by generating IFS fractals with fixed points that resemble a given target image - a famous problem known as the \emph{inverse IFS problem}. The main contributions of this work are as follows: 1) I demonstrate (and make code available) this rendering pipeline; 2) I discuss some of the nuances and pitfalls in gradient-descent-based optimization over fractal structures; 3) I discuss best practices to address some of these pitfalls; and finally 4) I discuss directions for further experiments to validate the technique.
- Abstract(参考訳): 本稿では、微分可能なレンダリングパイプラインを用いたIFSフラクタルのレンダリングにおける初期探索について述べる。
微分レンダリングは、コンピュータグラフィックスと機械学習の交差点における最近のイノベーションである。
微分可能な操作からなるフラクタルレンダリングパイプラインは、特定の基準を満たすフラクタルを生成する多くの可能性を開く。
本稿では,所定の対象画像に類似した固定点を持つIFSフラクタルを生成することにより,このパイプラインを実証する。
この作品の主な貢献は次の通りである。
1) このレンダリングパイプラインをデモ(そして利用可能に)します。
2) フラクタル構造に対する勾配差に基づく最適化におけるニュアンスと落とし穴について論じる。
3)これらの落とし穴に対処するためのベストプラクティスについて議論し、最後に
4) 本手法を検証するためのさらなる実験の方向性について論じる。
関連論文リスト
- PFGS: High Fidelity Point Cloud Rendering via Feature Splatting [5.866747029417274]
スパースポイントから高品質な画像をレンダリングする新しいフレームワークを提案する。
この手法はまず3次元ガウス格子と点雲のレンダリングを橋渡しする。
異なるベンチマーク実験により、レンダリング品質と主成分の必要性の観点から、我々の手法の優位性を示す。
論文 参考訳(メタデータ) (2024-07-04T11:42:54Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPointは、グローバルな自由境界面パラメータ化を実現するための教師なしのニューラルネットワークパイプラインである。
この研究は、グローバルマッピングと自由境界の両方を追求するニューラルポイントクラウドパラメータ化を調査する最初の試みである。
論文 参考訳(メタデータ) (2024-03-15T14:35:05Z) - Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields [54.482261428543985]
ニューラル・ラジアンス・フィールドを使用する手法は、新しいビュー合成のような従来のタスクに汎用的である。
3次元ガウシアンスプラッティングは, 実時間ラディアンス場レンダリングにおける最先端の性能を示した。
この問題を効果的に回避するために,アーキテクチャとトレーニングの変更を提案する。
論文 参考訳(メタデータ) (2023-12-06T00:46:30Z) - FFPN: Fourier Feature Pyramid Network for Ultrasound Image Segmentation [15.011573950064424]
超音波(US)画像セグメンテーションは多くのシナリオにおいてリアルタイムかつ高精度な解析を必要とする活発な研究領域である。
既存のアプローチは、不適切な輪郭符号化に悩まされるか、エンコードされた結果の有効活用に失敗する可能性がある。
本稿では,Fourier Feature Pyramid Network (FFPN) と呼ばれる新しいFourier-anchor-based DTSフレームワークについて述べる。
論文 参考訳(メタデータ) (2023-08-26T07:28:09Z) - Learning Fractals by Gradient Descent [19.93434604598185]
近年の視覚認識の研究は、モデル事前学習のためのランダムフラクタル画像を作成するために、この特性を活用している。
本稿では, フラクタル画像の基礎となるパラメータを勾配降下により学習する手法を提案する。
提案手法は, 視覚的品質の高いフラクタルパラメータを見つけ, 異なる損失関数に適合することを示す。
論文 参考訳(メタデータ) (2023-03-14T17:20:25Z) - Differentiable Rendering for Pose Estimation in Proximity Operations [4.282159812965446]
微分レンダリングは、レンダリングパラメータに関する画像レンダリング関数の微分を計算することを目的としている。
本稿では,6-DoFポーズ推定のための新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-24T06:12:16Z) - Deep Fourier Up-Sampling [100.59885545206744]
フーリエ領域のアップサンプリングは、そのような局所的な性質に従わないため、より難しい。
これらの問題を解決するために理論的に健全なDeep Fourier Up-Sampling (FourierUp)を提案する。
論文 参考訳(メタデータ) (2022-10-11T06:17:31Z) - Adaptive Local Implicit Image Function for Arbitrary-scale
Super-resolution [61.95533972380704]
局所暗黙画像関数(LIIF)は、対応する座標を入力として、画素値が拡張される連続関数として画像を表す。
LIIFは任意のスケールの超解像タスクに適用でき、その結果、様々なアップスケーリング要因に対して単一の効率的かつ効率的なモデルが得られる。
この問題を軽減するために,新しい適応型局所像関数(A-LIIF)を提案する。
論文 参考訳(メタデータ) (2022-08-07T11:23:23Z) - View Synthesis with Sculpted Neural Points [64.40344086212279]
暗黙の神経表現は印象的な視覚的品質を達成したが、計算効率に欠点がある。
本稿では,点雲を用いたビュー合成を行う新しい手法を提案する。
レンダリング速度を100倍以上速くしながら、NeRFよりも視覚的品質を向上する最初のポイントベース手法である。
論文 参考訳(メタデータ) (2022-05-12T03:54:35Z) - Seeing Implicit Neural Representations as Fourier Series [13.216389226310987]
Inlicit Neural Representation (INR)は低次元問題領域における高周波関数を表現するために多層パーセプトロンを使用する。
これらの表現は、複雑な3Dオブジェクトやシーンに関連するタスクについて、最先端の結果を得た。
この研究は2つの方法間の接続を分析し、フーリエ写像されたパーセプトロンが構造的に1つの隠蔽層SIRENと似ていることを示す。
論文 参考訳(メタデータ) (2021-09-01T08:40:20Z) - Learning Deformable Tetrahedral Meshes for 3D Reconstruction [78.0514377738632]
学習に基づく3次元再構成に対応する3次元形状表現は、機械学習とコンピュータグラフィックスにおいてオープンな問題である。
ニューラル3D再構成に関するこれまでの研究は、利点だけでなく、ポイントクラウド、ボクセル、サーフェスメッシュ、暗黙の関数表現といった制限も示していた。
Deformable Tetrahedral Meshes (DefTet) を, ボリューム四面体メッシュを再構成問題に用いるパラメータ化として導入する。
論文 参考訳(メタデータ) (2020-11-03T02:57:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。