Optomechanical simulation of a parametric oscillator
- URL: http://arxiv.org/abs/2203.01399v1
- Date: Wed, 2 Mar 2022 20:44:23 GMT
- Title: Optomechanical simulation of a parametric oscillator
- Authors: F. E. Onah and C. Ventura-Vel\'azquez and F. H. Maldonado-Villamizar
and B. R. Jaramillo-\'Avila and B. M. Rodr\'iguez-Lara
- Abstract summary: We study an optomechhanical device supporting at least three optical modes in the infrared telecommunication band and three mechanical vibration modes.
We model the coherent driving of each optical mode, independently of each other, to obtain an effective Hamiltonian showing the different types of parametric processes allowed in the device.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study an optomechhanical device supporting at least three optical modes in
the infrared telecommunication band and three mechanical vibration modes. We
model the coherent driving of each optical mode, independently of each other,
to obtain an effective Hamiltonian showing the different types of parametric
processes allowed in the device. We propose a bichromatic driving scheme, in
the lossy optical cavity regime, under a mean field approximation, that
provides the quantum simulation of a parametric oscillator with optical control
of its parameters.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Broadband Multidimensional Variational Measurement with Non-Symmetric Coupling [41.94295877935867]
We analyze a general case of the non-symmetric measurement scheme, in which the coupling strengths with the light modes are not equal to each other.
We found that the back action can be completely excluded from the measurement result in the case of the asymmetric system.
arXiv Detail & Related papers (2024-07-30T11:12:13Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Optical coupling control of isolated mechanical resonators [0.0]
We present a Hamiltonian model describing two pairs of mechanical and optical modes under standard optomechanical interaction.
We show that the quantum model, under this parameter range and external optical driving, may be approximated into parametric interaction models for all involved modes.
arXiv Detail & Related papers (2023-05-26T03:32:01Z) - Temperature gradient and asymmetric steady state correlations in
dissipatively coupled cascaded optomechanical systems [0.0]
We study the dynamics of a pair of optomechanical systems interacting dissipatively with a wave guide in a unidirectional way.
We explore both classical and quantum correlations established between the modes in both the transient and in the stationary regime.
We show that this unidirectional coupling establishes a temperature gradient between the mirrors, depending on the frequencies' detuning.
arXiv Detail & Related papers (2023-02-01T19:00:26Z) - Broadband Coherent Multidimensional Variational Measurement [0.0]
We show that usage of a multidimensional optical transducer may enable a broadband quantum back action evading measurement.
We discuss how proposed scheme relates to multidimensional system containing quantum-free subsystems.
arXiv Detail & Related papers (2022-05-07T19:52:25Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Optical nonreciprocal response and conversion in a Tavis-Cummings
coupling optomechanical system [4.419156740280762]
We propose a scheme to realize optical nonreciprocal response and conversion in a Tavis-Cummings coupling optomechanical system.
We find that the phases between the mechanical mode and the optical mode, as well as between the mechanical mode and the dopant mode, are correlated with each other.
Compared with the conventional optomechanical systems, the Tavis-Cummings coupling optomechanical system exhibits richer nonreciprocal conversion phenomena.
arXiv Detail & Related papers (2020-06-19T07:20:54Z) - Entanglement Dynamics in Dispersive Optomechanics: Non-Classicality and
Revival [0.0]
We study entanglement dynamics in dispersive optomechanical systems consisting of two optical modes and a mechanical oscillator inside an optical cavity.
The appearance of optical entanglement witnesses non-classicality of the oscillator.
An experimental realization with ultracold atomic ensembles is proposed.
arXiv Detail & Related papers (2020-06-03T18:04:21Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.