Realizing a mechanical dynamical Casimir effect with a low-frequency oscillator
- URL: http://arxiv.org/abs/2408.02308v2
- Date: Fri, 21 Feb 2025 09:03:05 GMT
- Title: Realizing a mechanical dynamical Casimir effect with a low-frequency oscillator
- Authors: Tian-hao Jiang, Jun Jing,
- Abstract summary: We propose to realize a mechanical dynamical Casimir effect (MDCE) in a hybrid optomechanical system.<n>It is not a quantum simulation of a parametric DCE such as in superconducting circuits.<n>It is found that the mechanical frequency can be about two orders smaller than the cavity mode in yielding a remarkable flux of DCE photons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose to realize a mechanical dynamical Casimir effect (MDCE) in a hybrid optomechanical system consisting of a cavity mode, a low-frequency mechanical oscillator, and a two-level atomic system. Described by the effective Hamiltonian, the mechanical energy is directly converted to the photons through a three-wave-mixing mechanism. It is not a quantum simulation of a parametric DCE such as in superconducting circuits. Using a master-equation approach, we analyze the system dynamics in various regimes with respect to the ratio of the effective coupling strength and the loss rate of the system. The dynamics under the strong-coupling regime confirms various three-wave-mixing processes for creating photons by annihilation of mechanical and atomic excitations. Under the weak-coupling regime, a continuous production of photons can be demonstrated by driving both the mechanical oscillator and atom. By virtue of an atom of tunable frequency, our method avoids using the high-frequency mechanical oscillator, which is required for the conventional DCE in optomechanical systems under the double-photon resonance yet is out of reach of experiment. It is found that the mechanical frequency can be about two orders smaller than the cavity mode in yielding a remarkable flux of DCE photons.
Related papers
- Optomechanical dark-mode-breaking cooling [17.645447796208817]
We show the first experimental demonstration of simultaneous cooling of two near-degenerate mechanical modes.
The dark mode is generated as the system passes the exceptional point of the antiparity-time symmetric scheme.
By introducing a second cavity mode for the additional dissipative channel, the dark mode is broken and the total phonon number is reduced by more than an order of magnitude below the dark mode cooling limit.
arXiv Detail & Related papers (2024-12-20T13:30:45Z) - Optimizing Entanglement in Nanomechanical Resonators through Quantum Squeezing and Parametric Amplification [0.0]
We propose a scheme that optimize entanglement in nanomechanical resonators through quantum state transfer of squeezed fields assisted by radiation pressure.
The system is driven by red-detuned laser fields, which enable simultaneous cooling of the mechanical resonators.
arXiv Detail & Related papers (2024-10-20T09:37:30Z) - Oscillatory dissipative tunneling in an asymmetric double-well potential [32.65699367892846]
Chemical research will benefit from a fully controllable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.
Our work paves the way for analog molecule simulators based on quantum superconducting circuits.
arXiv Detail & Related papers (2024-09-19T22:43:07Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Two-Level System Nanomechanics in the Blue-Detuned Regime [0.0]
We study a mechanical oscillator coupled to a two-level system driven by a blue-detuned coherent source in the resolved sideband regime.
For weak mechanical damping, we find dynamical instabilities leading to limit cycles.
We discuss the relation with cavity optomechanical systems.
arXiv Detail & Related papers (2024-07-25T10:11:44Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Single-photon induced instabilities in a cavity electromechanical device [0.0]
nonlinear radiation-pressure interaction in Cavity-electromechanical systems could result in an unstable response of the mechanical resonator.
By using polariton modes formed by a strongly coupled flux-tunable transmon and a microwave cavity, here we demonstrate an electromechanical device and achieve a single-photon coupling rate.
Such an improvement in the single-photon coupling rate and the observations of microwave frequency combs at single-photon levels may have applications in the quantum control of the motional states and critical parametric sensing.
arXiv Detail & Related papers (2023-09-13T07:33:09Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Coupling enhancement and symmetrization of single-photon optomechanics
in open quantum systems [0.76146285961466]
We study optimal reciprocal transport in symmetric optomechanics.
This work may pave the way to studying the single-photon optomechanical effects with current experimental platforms.
arXiv Detail & Related papers (2023-02-09T19:01:15Z) - Dissipative Optomechanics in High-Frequency Nanomechanical Resonators [0.0]
We show the first dissipative optomechanical system operating in the sideband-resolved regime, where the mechanical frequency is larger than the optical linewidth.
Our figures represent a two-order-of-magnitude leap in the mechanical frequency and a tenfold increase in the dissipative optomechanical coupling rate compared to previous works.
arXiv Detail & Related papers (2022-12-30T03:16:31Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Mechanical Squeezing in Quadratically-coupled Optomechanical Systems [0.0]
We demonstrate the generation of a strong mechanical squeezing in a dissipative optomechanical system.
Even for a thermal occupancy of 104 phonons, mechanical squeezing beyond 3 dB and a strong optomechanical entanglement is observed.
arXiv Detail & Related papers (2022-10-02T13:13:37Z) - Quantum manipulation of a two-level mechanical system [19.444636864515726]
We consider a nonlinearly coupled electromechanical system, and develop a quantitative theory for two-phonon cooling.
In the presence of two-phonon cooling, the mechanical Hilbert space is effectively reduced to its ground and first excited states.
We propose a scheme for performing arbitrary Bloch sphere rotations, and derive the fidelity in the specific case of a $pi$-pulse.
arXiv Detail & Related papers (2021-01-05T19:34:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.