Exact performance of the five-qubit code with coherent errors
- URL: http://arxiv.org/abs/2203.01706v1
- Date: Thu, 3 Mar 2022 13:28:59 GMT
- Title: Exact performance of the five-qubit code with coherent errors
- Authors: Chaobin Liu
- Abstract summary: We obtain explicit process matrix of the coding maps with a unital error channel for the five-qubit code.
We analytically show how the code affects the average gate infidelity and diamond distance of the error channels.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To well understand the behavior of quantum error correction codes (QECC) in
noise processes, we need to obtain explicit coding maps for QECC. Due to
extraordinary amount of computational labor that they entails, explicit coding
maps are a little known. Indeed this is even true for one of the most commonly
considered quantum codes-the five-qubit code, also known as the smallest
perfect code that permits corrections of generic single-qubit errors. With
direct but complicated computation, we obtain explicit process matrix of the
coding maps with a unital error channel for the five-qubit code. The process
matrix allows us to conduct exact analysis on the performance of the quantum
code. We prove that the code can correct a generic error in the sense that
under repeated concatenation of the coding map with itself, the code does not
make any assumption about the error model other than it being weak and thus can
remove the error(it can transform/take the error channel to the identity
channel if the error is sufficiently small.). We focus on the examination of
some coherent error models (non diagonal channels) studied in recent
literatures. We numerically derive a lower bound on threshold of the
convergence for the code. Furthermore, we analytically show how the code
affects the average gate infidelity and diamond distance of the error channels.
Explicit formulas of the two measurements for both pre-error channel and
post-error channel are derived, and we then analyze the logical error rates of
the aforesaid quantum code. Our findings tighten the upper bounds on diamond
distance of the noise channel after error corrections obtained in literature.
Related papers
- Fault-tolerant noise guessing decoding of quantum random codes [0.0]
We present a new decoder for quantum random linear codes (QRLCs) capable of dealing with imperfect decoding operations.
We analyze the fault-tolerant characteristics of QRLCs with a new noise-guessing decoding technique.
arXiv Detail & Related papers (2024-07-01T17:54:23Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC)
Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle.
We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than $1 times 10-3$ throughout the entire device.
arXiv Detail & Related papers (2022-11-09T07:54:35Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Graph-Theoretic Approach to Quantum Error Correction [0.0]
We investigate a novel class of quantum error correcting codes to correct errors on both qubits and higher-state quantum systems represented as qudits.
These codes arise from an original graph-theoretic representation of sets of quantum errors.
We present two instances of optimal encodings: an optimal encoding for fully correlated noise which achieves a higher encoding rate than previously known, and a minimal encoding for single qudits.
arXiv Detail & Related papers (2021-10-16T00:04:24Z) - Short Codes for Quantum Channels with One Prevalent Pauli Error Type [6.548580592686076]
We investigate the design of stabilizer QECC able to correct a given number eg of generic Pauli errors, plus eZ Pauli errors of a specified type.
These codes can be of interest when the quantum channel is asymmetric in that some types of error occur more frequently than others.
arXiv Detail & Related papers (2021-04-09T13:51:51Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Quantum Error Source and Channel Coding [0.0]
We prove conditions on the set of correctable error patterns allowing for unambiguous decoding based on a lookup table.
We argue that quantum error correction is more aptly viewed as source compression in the sense of Shannon.
arXiv Detail & Related papers (2020-04-20T17:55:21Z) - Correcting spanning errors with a fractal code [7.6146285961466]
We propose an efficient decoder for the Fibonacci code'; a two-dimensional classical code that mimics the fractal nature of the cubic code.
We perform numerical experiments that show our decoder is robust to one-dimensional, correlated errors.
arXiv Detail & Related papers (2020-02-26T19:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.