Quantum random walks in coupled photonic ring resonators
- URL: http://arxiv.org/abs/2203.01719v1
- Date: Thu, 3 Mar 2022 14:01:58 GMT
- Title: Quantum random walks in coupled photonic ring resonators
- Authors: Ricardo M. R. Ad\~ao, Manuel Ca\~no-Garc\'ia, Jana B. Nieder, Ernesto
F. Galv\~ao
- Abstract summary: Photonic technologies provide a natural platform for many recent experimental demonstrations.
We analyze quantum random walks implemented by coherent light propagation in series-coupled photonic ring resonators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum random walks use interference to obtain faster state space
exploration, which can be used for algorithmic purposes. Photonic technologies
provide a natural platform for many recent experimental demonstrations. Here we
analyze quantum random walks implemented by coherent light propagation in
series-coupled photonic ring resonators. We propose a family of graphs modeling
these devices and compare quantum and classical random walks on these
structures, calculating steady-state and time-dependent solutions. We obtain
conditions for quantum advantage in this setting and show how to recover
classical random walks by averaging over quantum phases. Preliminary device
feasibility tests are carried out via simulations and experimental results
using polymeric directional couplers.
Related papers
- Demonstration of quantum projective simulation on a single-photon-based quantum computer [0.0]
Variational quantum algorithms show potential in effectively operating on noisy intermediate-scale quantum devices.
We present the implementation of this algorithm on Ascella, a single-photon-based quantum computer from Quandela.
arXiv Detail & Related papers (2024-04-19T09:17:15Z) - Quantum Computing Simulation of a Mixed Spin-Boson Hamiltonian and Its Performance for a Cavity Quantum Electrodynamics Problem [0.0]
We present a methodology for simulating a phase transition in a pair of cavities that permit photon hopping.
We find that the simulation can be performed with a modest amount of quantum resources.
arXiv Detail & Related papers (2023-10-17T15:25:35Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Enhanced Electro-Optic Sampling with Quantum Probes [0.0]
Photon-number entangled twin beams are used to derive conditioned non-classical probes.
In the case of the quantum vacuum, this leads to a six-fold improvement in the signal-to-noise ratio.
arXiv Detail & Related papers (2021-06-08T14:25:24Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Boson sampling with random numbers of photons [0.0]
We show a novel boson sampling scheme where the probability of success increases instead of decreasing.
This is achieved by sampling at the same time in the number of occupied input ports and the number of input photons per port.
arXiv Detail & Related papers (2020-06-05T17:53:07Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.